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GENERAL INTRODUCTION 

Explanation of Dissertation Format 

This dissertation contains three papers preceded by a general 

introduction which includes experimental objectives, a background and 

literature review and a rationale; these are followed by a discussion and a 

list of references cited in the general Introduction and discussion. Papers 

I and III represent two research papers already published, and paper II 

represents a manuscript accepted for publication in the Neuroscience 

Letters. 

The dissertation contains a large part of the experimental results 

obtained by the author during the course of his graduate study under the 

supervision of Dr. Mirjana Randic. 

Research Objectives 

Anatomical and physiological studies have provided a relatively 

detailed description of the organization of afferent projections to the 

spinal dorsal horn. These studies have, in addition, emphasized the central 

role of the primary afferent synapse in the mediation of modulation of 

cutaneous sensory information in the dorsal horn. The finding that the 

spinal dorsal horn contains high levels of second messengers raised the 

possibility that second messengers may play a functional role in sensory 

transmission. 
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Recent studies demonstrated that second-messenger systems may alter 

nerve cell activity by modifying characteristics of voltage-gated channels 

and the release of neurotransmitters. The neuromodulation of ligand-gated 

channels, crucial for the control of synaptic strength, has been reported 

in only a few instances. 

The objective of this research was to examine the possible modulation 

of the neuronal glutamate-gated channels by activation of second-messenger 

systems in the spinal dorsal horn. The specific purpose of the conducted 

experiments was to study the possible modulation of passive membrane 

properties (i.e. Vm and Rn), synaptic responses and the sensitivity of 

various postsynaptic glutamate receptor subtypes of DH neurons by the 

activation of cyclic AMP-dependent second-messenger system and by the 

activation of G-proteins and second-messengers coupled glutamate 

metabotropic receptor. The experiments used standard sharp-electrode 

technique for intracellular voltage recordings from in vitro spinal cord 

slice-dorsal root preparation of young rats and whole-cell voltage-clamp 

recordings from acutely isolated rat spinal dorsal horn neurons. 

Background and Literature Review 

This section briefly reviews the structural and functional 

organization of spinal dorsal horn, the excitatory amino acid mediated 

neurotransmission and the cAMP-dependent second messenger system, in order 

to provide a background information for the study of modulation of 

excitatory synaptic transmission and the sensitivity of postsynaptic 
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glutamate receptor subtypes in the spinal dorsal horn. 

Structural and functional oreanization of the spinal dorsal horn 

Sensory receptors and primary sensory neurons 

Several types of peripheral receptors (cutaneous, muscle, visceral) 

(Table 1, Martin, 1991) transduce mechanical signals from the environment 

and the organism itself into electrical signals that are conducted by 

primary sensory neurons to the spinal cord (Campbell et al. 1989, 

Fitzgerald 1989, Martin 1991, Martin and Jessell 1991). The synaptic 

contacts of primary afferent fibers with heterogenous populations of spinal 

cord neurons represent the first stage in the CNS at which sensory 

information is processed and integrated. 

The primary afferent neurons are unipolar with pericarya in dorsal 

root ganglia. On the basis of the pericaryon size, duration of somatic 

action potential, conduction velocity of nerve fibers, sensory modality, 

neurochemistry, chemosensitivity and distribution of cellular organelles 

they can be classified into several groups (Harper and Lawson, 1985a,b, 

Sugiura et al., 1988, Martin, 1991). Two principal groups have been 

described in dorsal root ganglion (DRG) (Liebermann, 1976, Harper and 

Lawson, 1985a,b). About 30-40% of neurons have large pericarya (30-70 /un in 

diameter) that stain with basic dyes or silver salts, short-duration action 

potentials (0.49-1.35 ms at the base) that are tetrodotoxin-sensitive, and 

give off large diameter myelinated axons (Aa or A/3). They are classified as 

A type. The remaining 60-70% of neurons have smaller (25-30 /jm) darkly-
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staining pericaryon, long duration action potentials (0.5-8.0 ms at the 

base) that are in some cases tetrodotoxin-insensitive, and contain a 

prominent Ca^ component. In general they give off small diameter axons (A5 

or C) that are poorly myelinated or unmyelinated. This type is classified 

as B type. In addition to the two major groups there is a considerable 

number of intermediate size cells. Recent evidence suggests that a specific 

fiber type is not simply related to the cell body size so that C fibers may 

have large or small cell bodies (Hoheisel and Mense, 1986). 

The axon of the ganglion cell often follows a highly convoluted path 

and then divides to form two branches. The central branch goes to the 

spinal cord through the dorsal root and the peripheral branch contributes 

to the peripheral nerve. Together they form a primary afferent fiber. The 

primary afferent fibers are classified on the basis of sensory modality, 

presence of myelin, fiber diameter, and conduction velocity. The afferent 

fibers from skin are alphabetically coded: Aa, A/3, A5 and C. Their 

associations with different receptor types and sensory modalities are shown 

in table 1 (Martin, 1991), Aa fibers have the highest conduction velocity 

(30-50 m/s), the largest fiber diameter and are the most myelinated whereas 

C fibers are the slowest (< 1.4 m/s), have the smallest fiber diameter and 

are unmyelinated. The classification of muscle afferents is different and 

is coded with roman numbers I-IV, with I being large myelinated, II small 

myelinated. III smaller myelinated and IV being unmyelinated fibers. Table 

2 shows the classification for muscle afferents compared with 

classification for cutaneous sensory afferents, fiber diameter and 

conduction velocity (Martin, 1991). 
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Central processes of primary afferent fibers enter the spinal cord at 

the dorsal root entry zone (Fitzgerald, 1989). In general, slow conducting 

AS and C fibers travel in the lateral part of dorsal white matter including 

Lissauer's tract, whereas A fibers travel more medially. After entering the 

spinal cord they branch in the white matter and give off collaterals that 

terminate in the gray matter. Dorsal root afferents give off most of the 

collaterals in their segment of entry but the rostrocaudal spread is 

significant. Although the spread is relatively small (approximately one 

segment at midthoracic level), it involves several segments at the 

lumbosacral level (Chung et al., 1979). It is in general bigger for large 

diameter (A) than small diameter (C) fibers. The two types of fibers 

differ also in the pattern of termination. Aa and Ay3 fibers project 

predominantly to deeper laminae (III-V) and A5 and C fibers terminate in 

the superficial laminae (I-III) of the dorsal horn (Wolf, 1987, Fitzgerald, 

1989). An interesting observation that complicates the concept of 

anatomical separation of afferent and efferent neurotransmission was made 

in the cat lumbosacral enlargement, where Coggeshall et al. (1974) 

demonstrated the presence of afferent fibers in the ventral root. Similar 

observation was made in the rat and human (Coggeshall et al., 1975, 1977) 

spinal cord. 

In addition to their morphological and physiological differences, the 

dorsal root ganglion neurons differ by their chemical content (Jessell and 

Dodd, 1989). The immunocytochemical studies of primary sensory neurons 

demonstrated the existence of at least ten peptides with a possible 

neurotransmitter function (e.g. SP/NKA/CGRP/SS/CCK/VIP/CGRP/GAL/ENK/DYN). 
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Table 1. Receptor types active in various sensations (Martin, 1991) 

Receptor type Fiber 
group 

Quality 

Nociceptors 
Mechanical Afi 
Thermal and mechano- thermal A5 
Thermal and mechano-thermal C 
Polymodal C 

Cutaneous and Subcutaneous 
mechanoreceptors 
Meissner's corpuscle kp 
Pacinian corpuscle A)9 
Ruffini corpuscle kp 
Merkel receptor Aj9 
Hair-guard kfi 
Hair-tylotrich A/3 
Hair-down Ay3 

Muscle and skeletal 
mechanoreceptors 
Muscle spindle primary ka 
Muscle spindle secondary Aj9 
Joint capsule mechanoreceptors A/3 

Sharp, prickling pain 
Sharp, prickling pain 
Slow, burning pain 
Slow, burning pain 

Flutter 
Vibration 
Steady skin indentation 
Steady skin indentation 
Flutter 

Golgi tendon organ Aa 

Limb proprioception 
Limb proprioception 
Joint capsule pressure ; limited 
role in limb proprioception 

Table 2. Afferent fiber groups (Martin, 1991) 

Muscle Cutaneous Fiber diameter Conduction 
nerve nerve (/jm) velocity (m/s) 

Myelinated 
Large I A-C 13-20 80-120 
Small II A/3 6-12 35-75 
Smallest III A5 1-5 5-30 

Unmyelinated IV C 0.2-1.5 0.5-2 
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The same studies provided evidence for the co-existence of several peptides 

in a single primary sensory neuron (Lee et al., 1985, Jessell and Dodd, 

1989, Seybold et al., 1989). 

Termination of primary afferent fibers 

The different classes of primary afferent fibers that convey distinct 

somatosensory modalities take specific routes and end in different regions 

of the spinal cord. By this means the specific sensory information conveyed 

by a particular mechanoreceptor, nociceptor or thermoreceptor in the skin 

is maintained within the central nervous system. Labeling studies with 

horseradish peroxidase have shown that the terminals of each cutaneous 

nerve occupy a clearly defined region with little or no overlap with the 

territories of nearby nerves (Koerber and Brown 1980, Molander and Grant 

1986). Furthermore within the territory of a given cutaneous nerve there is 

a somatotopic arrangement of terminals, thus for instance each digit has 

its own area of termination within the tibial field (Molander and Grant, 

1985). Unlike cutaneous nerves, muscle and visceral nerve terminals have no 

clear somatotopic arrangement in the spinal cord (Molander and Grant, 

1987). In general, primary nociceptive afferents have been shown to 

terminate in layers I and II (Light and Perl, 1979, Gobel et al., 1985). 

Some of these afferents give collaterals to the lamina V. Unmyelinated and 

polymodal nociceptive afferents (C) are considered to terminate in layer I 

(Gobel et al., 1981) and possibly also in layers Ila and V (Dubner and 

Benett, 1983). High-threshold mechanoreceptors (AS) terminate in layers I 

and Ila. Direct evidence for termination of A5 high-threshold 
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mechanoreceptive afferents in the superficial laminae comes from 

horseradish peroxidase injections into the axons of functionally identified 

afferents (Light and Perl, 1979). Horseradish peroxidase filled the 

terminal arbors of these afferents, and its reaction product was Identified 

in layers I and Ila with both light and electron microscopic analysis. In 

contrast, low-threshold mechanoreceptive primary afferents, also identified 

morphologically by horseradish peroxidase injections of their axons, 

terminate heavily in layers III to IV and sparsely in layer lib (Brown et 

al., 1977, Brown, 1981). This differential distribution of nociceptive and 

non-nociceptive afferents at least partially accounts for the predominance 

of second-order nociceptive neurons in layers I and Ila and the 

predominance of low-threshold mechanoreceptive neurons in layers III-IV 

(Dubner and Bennett, 1983, Gobel, 1979). Interestingly, the somatotopic map 

for C Fibers in substantia gelatinosa is similar to that for A fibers in 

deeper laminae, but the two are not strictly in register, due to 

dorsoventral obliquity of the A fiber terminals (Wolf and Fitzgerald, 

1986). In addition to the specificity of central termination projection 

each class of primary afferent fibers may possess unique arborization 

patterns, spacing of the collateral branches, and arrangement of buttons on 

the axon terminals (Cervero, 1986). 

Cvtoarchitecture of the dorsal horn 

Current nomenclature of the cytoarchitecture of gray matter of the 

spinal cord is based on the Rexed's study of the cat spinal cord (Rexed 

1952, 1954). He used the Nissl-staining technique to study morphological 
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characteristics of spinal cord neurons (i.s., the sizes, shapes, densities 

and distribution of neuronal somas etc.) without taking into the account 

the dendritic trees. Based on these observations he proposed the anatomical 

division of the spinal cord gray matter in ten different laminae, with 

laminae I-VI being in the dorsal horn, laminae VII-IX in the ventral horn 

and lamina X around the central canal. The importance of this laminar 

organization has been emphasized by the discovery that the afferent fiber 

classes distribute themselves to fit the laminae (Fitzgerald 1989). This 

division has become generally accepted (Brown, 1981, Willis and Coggeshal 

1978). It has been further supported by physiological investigations and 

has been extrapolated to every mammalian species studied (Paxinos and 

Watson, 1982, Wall, 1991). 

Lamina I (Marginal zone) is the most superficial layer of the dorsal 

horn, composed of neurons varying in size from small (5x5 to 10x10 /xm) to 

medium and large (10-15x30-50 ̂ m) (Rexed, 1952). Characteristic for the 

lamina I are the large, marginal cells (Ramon y Cajal, 1909). They have 

flattened cell bodies with an ellipsoid dendritic domain, which is confined 

to lamina I. The marginal cells project predominantly to the lateral 

cervical nucleus, the thalamus, the medullary and midbrain reticular 

formation (Brown, 1980). However, as local circuit neurons they give 

projections also to the spinal cord a segment or two away from the cell 

body (Burton and Loewy, 1976). This approximately 12-20 urn thick layer 

(Hunt et al.1980) is the major termination site of small myelinated 

afferent fibers (A6) from skin; the latter form synapses with dendrites of 

the marginal cells (Sugiura et al., 1986). In addition lamina I receives 
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inputs from C fibers (nociceptive) (Sugiura et al., 1986), from 

interneurons in laminae II and III, and some descending, presumably 

inhibitory neuronal elements arising from the nucleus reticularis 

magnocellularis (Basbaum et al., 1978). According to their physiological 

activation characteristics three groups of neurons have been described in 

this lamina: nociceptive-specific neurons (NS), wide-dynamic range neurons 

(WDR, which respond to both nociceptors and low threshold mechanoreceptors) 

and thermoreceptive neurons that respond to warming and cooling (Kniffki, 

1989). The lamina I neurons differ also by their peptide content. At least 

ten neuropeptides are localized in the lamina I (e.g. SP, NKA, CCK, SRIF, 

VIP, NT, ENK, NPY, DYN and GAL) (Jessel and Dodd, 1989). 

Lamina II (Substantia gelatlnosa of Rolando) is an easily 

distinguishable translucent area ventral to lamina I. Its pale appearance 

is due to absence of myelinated fibers and densely packed small cells 

(Ramon y Cajal, 1909, Rexed, 1952). Based on the dendritic arborizations 

and axonal projections of its neurons, lamina II is further subdivided in 

two regions. The outer region (lamina IIo) is 30-40/im thick, and the inner 

region (lamina Hi) is 40-50 fim thick (Brown, 1981). Two types of neurons 

are present in lamina II. The larger (16-22pm) stalked cells with cone-

shaped dendritic domains are predominantly found in the lamina IIo and 

smaller (5x5 - lOxlO/im) islet cells with longitudinally oriented dendritic 

trees are mostly found in lamina Hi. Functionaly, the neurons in the 

lamina IIo are predominantly NS or WDR with axons projecting into lamina I 

(Sugiura, 1975, Brown, 1981), while the neurons of lamina Hi respond only 

to innocuous mechanical stimuli (Brown, 1981). The input to the lamina II 
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is largely from unmyelinated and smaller myelinated fibers. Unmyelinated 

(C) fibers predominantly terminate in this area while smaller myelinated 

(AS) fibers terminate in this as well as in lamina I. There is almost no 

input from large myelinated fibers (A/9). Fourteen different peptides with 

potential neurotransmitter function were identified in this lamina (SP, 

NKA, VAS, OXY, CCK, SRIF, VIP, NT, ENK, NPY, DYN, GAL, CGRP and TRH) 

(Jessel and Dodd, 1989). 

Rexed's laminae I and II comprise the superficial dorsal horn 

(Cervero, 1989). Because of the nociceptive nature of the smaller 

myelinated and unmyelinated fibers terminating in the laminae I and II, the 

superficial dorsal horn is considered to be an important site for 

transmission and modulation of nociceptive information. 

Lamina III is relatively broad and limited medially by white matter and 

laterally by substantia gelatinosa. It is composed of small size neurons 

(7x10 - 8x12 jum), that are less densely packed than in lamina II and 

contain some myelinated fibers (Rexed, 1952, Brown, 1981). Input in the 

lamina III is predominantly from low threshold mechanoreceptive fibers (A)9) 

and from proprioceptive fibers (Szentagothai, 1964). The peptides are less 

abundant in this area (SP, ENK, NT and TRH). 

Lamina IV is thicker than the previous laminae, medially limited by 

white matter and laterally by more superficial areas. The distribution of 

cells is less dense and there are more fibers than in lamina III, which 

makes it look darker (Rexed, 1952, Brown, 1981). Characteristic of lamina 

IV is neuronal heterogeneity, with neurons varying in size from smaller (8-

11pm) to large(35-45/im). The most prominent are large star-shaped cells 
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with long dendrites. Dorsally-directed dendrites penetrate the substantia 

gelatinosa and may receive input from substantia gelatinosa neurons 

(Szentagothai, 1964). Lamina IV neurons project centrally through the 

spinothalamic, spinocervical or propriospinal tract (Willis and Coggeshall, 

1978). The neuropeptide content is similar to the peptide content of lamina 

III. 

Lamina V is located in the neck of the dorsal horn, medially limited by 

white matter and laterally transformed gradually through a mesh of 

myelinated fibers into white matter. The neurons show even more variability 

than in the lamina IV (8xlOpm to 30x40pm). Their projections are similar to 

the ones of lamina IV and the inputs are predominantly C fibers from 

viscera, AS from skin and group IV from muscle. This lamina is richer in 

neuropeptide content than lamina IV and contains at least eight potential 

peptide neuromodulators (SP, CCK, SRIF, CRF, ENK, NPY, DYN and GAL) 

Lamina VI exists only in cervical and lumbar enlargement of the spinal 

cord. The cells in this area are smaller (SxS/xm to 30x35/jm) and more 

regular in shape than cells in lamina V. The neurons have complex afferent 

input, with a large proportion of neurons responding to low-threshold 

muscle mechanoreceptors (Wall, 1989). The neuropeptide content is similar 

to the previous area. 

Laminae II, IV, V and VI comprise the nucleus proprius, which 

integrates sensory input with information that descends from the brain and 

the region of the base of the dorsal horn where many of the neurons that 

project to the brain stem are located. 



www.manaraa.com

13 

Fast excitatory neurotransmission in the spinal dorsal horn 

Experimental evidence indicates that there are two major classes of 

chemical compounds that are released during activation of primary afferent 

fibers in the mammalian spinal DH. Dicarboxylic amino acids, glutamate 

(Glu) and aspartate are the major candidates for the fast excitatory 

neurotransmitters (Mayer and Westbrook 1987, Kangrga et al., 1988, Gerber 

et al., 1989a, Yoshimura and Nishi, 1993) whereas tachykinins (substance P, 

neurokinin A) appear to be functionally involved in the slow excitatory 

synaptic transmission (Urban and Randic, 1984). 

Excitatory amino acids (EAA) 

It is a widely accepted idea that glutamate, or a related amino acid, 

is the major primary afferent neurotransmitter mediating fast excitatory 

transmission in the mammalian brain (Mayer and Westbrook, 1987; Wroblewski 

and Danysz, 1988; Watkins, 1990), and spinal cord (Jahr and Jessell, 1985, 

1987, Kangrga et al., 1988, Gerber et al., 1989a, Yoshimura et al., 1990, 

1991, Yoshimura and Nishi, 1993). It is localized in dorsal root ganglion 

neurons (DeBiasi and Rustioni, 1988, Henley et al., 1993) and released upon 

electrical activation of primary afferent fibers or other types of 

stimulation (Kangrga and Randic, 1990, 1991). The application of Glu to 

dorsal horn neurons induces a depolarizing response (Curtis et al., 1960; 

Schneider and Perl, 1985, 1988) that closely resembles the fast EPSP 

induced by dorsal root stimulation (Gerber and Randic, 1989c; Yoshimura and 

Jessel, 1990). Glutamate activates at least three major ionotropic receptor 
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subtypes, characterized by their selective agonists N-methyl-D-aspartate 

(NMDA), a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and 

kainate (KA). In addition it acts at metabotropic receptor subtypes that 

are activated by a selective agonist trans-ACPD, or by a non-selective 

agonist QA (quisqualate) (Watkins and al,, 1990, Sommer and Seeburg, 1992, 

Schoepp and Conn, 1993). 

lonotropic plutamate receptors 

lonotropic glutamate receptors are ligand-gated ion channels, that 

upon activation increase permeability to Na"*", K"*" and Ca^ ions. The NMDA 

glutamate receptor is a clearly distinct entity and can be 

pharmacologically isolated from other ionotropic glutamate receptor 

subtypes by use of a specific agonist NMDA and an antagonist D-2-amino-5-

phosphonovalerate (APV)(Mayer and Westbrook, 1987). The functional 

difference between AMPA and KA receptors is less obvious since they lack 

specific antagonists that can differentiate between AMPA and KA responses. 

The pharmacological classification in distinct categories is based on 

existence of high affinity binding sites for KA and AMPA with disparate 

anatomical distributions (Cotman et al., 1987). This distinction was 

supported by different single-channel conductances observed for AMPA and KA 

responses (Ascher and Nowak, 1988, Wyllie, 1993) and by differential 

distribution of AMPA and KA receptors on the dendrites of an individual DH 

neuron (Arancio, 1993). 

The reversal potential, of ionotropic glutamate receptors (AMPA, KA 

and NMDA) is close to OmV, which suggests mixed ion conductance mechanism 
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(Mayer and Westbrook, 1987, Gerber and Randlc, 1989). Functional 

characteristics are the best known for NMDA-gated ion channels. The NMDA 

receptor has a micromolar affinity constant for glutamate (Olverman et al., 

1984). The receptor-channel complex exhibits multiple conductance states 

(Ascher et al. 1988, Ascher and Nowak, 1988) with a main conductance state 

of 50pS. Relatively large conductance makes the channel permeable not only 

for Na"*", K"*" but also for larger ions like Ca^ (Ascher and Novak, 1988). The 

NMDA receptor channel is unique among ligand gated channels. In the 

presence of physiological levels of Mg^ it exhibits a strong inward 

rectification. The inward rectification is due to voltage-dependent block 

by Mg^ ions (Mayer and al. , 1984) and is absent when Mg"*^ is removed from 

the medium, or at depolarized membrane potentials. NMDA receptor is 

allosterically potentiated by glycine in a strychnine-insensitive manner 

(Johnson and Ascher, 1987) and glycine also reduces the desensitization of 

NMDA currents (Mayer et al., 1989). It can be noncompetitively blocked by 

several phencyclidine-like antagonists like MK 801 (Lodge and Johnson, 

1990), and up- or down-regulated by Zn^ (Mayer and Westbrook, 1987, 

Hollmann et al., 1993). Characteristic of NMDA receptor-channel is the 

lengthy open state of the channel that can last several hundreds of 

milliseconds (Lester et al., 1990). 

Non-NMDA glutamate receptors are activated by specific agonists, AMPA 

and KA, and blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2,3-

dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline (NBQX)(Watkins et al., 

1990, Sheardown et al., 1990). The activation of AMPA receptor-channels 

open rapidly inactivating (3ms) low conductance states (Ascher and Nowak, 
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1988) and the activation of KA receptor channels opens non-inactivating low 

conductance states. The predominant conductance state for AMPA-activated 

channel is SpS and for KA 4pS, which makes the channels relatively 

impermeable for larger Ca^ ions. However, AMPA/KA channels with higher 

conductances that permeated significant amounts of Ca"*^, were described in 

a subpopulation of hippocampal neurons (lino et al., 1990). Although the 

non-NMDA receptor activated channels show little or no rectification 

kainate-activated currents exhibiting outward rectification were reported 

in a subpopulation of hippocampal neurons and in rat spinal trigeminal 

neurons (lino et al., 1990, Gu and Huang, 1991). The observed outward 

rectification is due to voltage-independent Ca"*^ block of KA channel. 

Recently, more than sixteen subunits of ionotropic glutamate receptor 

have been cloned from the rodent CNS (Hollmann et al., 1989, Gasic and 

Hollmann, 1992, Sommer and Seeburg, 1992) and the chromosomal localization 

of human glutamate receptor genes was determined (McNamara et al., 1992). 

The cloned GluR subunits have little sequence similarity with other ligand-

gated channels; however, they share basic structural similarities like four 

putative membrane spanning domains, extracellularly located C and N 

terminals and highly conserved second transmembrane domain proposed to form 

the ion-conducting pore (Hollmann et al., 1989). 

Currently there are four cloned AMPA subunits (GluRl-GluR4) (Hollmann 

et al., 1989, Boulter et al., 1990, Nakanishi et al., 1990, Keinanen et 

al., 1990) that show a high degree of sequence similarity. They have 

relatively high affinity for AMPA binding and, when expressed in oocytes, 

form functional AMPA channels. Each of these four proteins can exist as two 



www.manaraa.com

17 

variants generated by alternative splicing (flip and flop) (Sommer et al., 

1990). The differentially spliced subunits are functionally different and 

form ion channels which differ in their patterns of desensitization. 

Another functional difference, the permeability for Ca^ ions, also depends 

on the sequence of the encoding subunit and the amino acid composition of 

subunits in the ion channel. When expressed in Xenopus oocytes alone or in 

combination, GluRl and GluR3 form receptor-channel complexes that have 

substantial Ca""" permeability, but, when GluR2 is coexpressed with either 

GluRl or GluR3, the receptor channels have little or no Ca^ permeability 

(Hollmann et al., 1991). Further studies (Hume et al., 1991, Verdoonn et 

al., 1991) have demonstrated that the calcium permeability is determined by 

a single amino acid (arginine) within the predicted second transmembrane 

segment of the GluR2 subunit. A site-specific mutation of a positively 

charged arginine to a neutral glutamine (Q590R) in the structure of GluR2 

can confer significant Ca"*^ conductance to the channel (Hume et al., 1991). 

KA receptor family (GluR5, 6, 7 and KA-1, -2) (Settler et al.,1990, 

Werner et al., 1991, Egebjerg et al., 1991, Settler et al., 1992, Sommer et 

al., 1992) has approximately 40% sequence homology with AMPA receptors and 

binds KA with significantly higher affinity than AMPA (Gasic and Hollmann, 

1992). Even though the functional role of various subunits is not clearly 

established, at least one, GluR6 forms a homomeric pore that is activated 

by KA and not by AMPA (Egebjerg et al., 1991). This finding provides a 

strong support for existence of two distinct subtypes of non-NMDA (AMPA and 

KA) receptor. 

The currents mediated by homomeric non-NMDA receptors differ from the 
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non-NMDA currents seen in natural membranes. It seems that non-NMDA 

receptors require expression of heteromeric receptor channel complexes to 

obtain the features of non-NMDA receptors seen in natural membranes 

(Boulter et al., 1990, Nakanishi et al., 1990). A recent study has 

confirmed this observation by demonstrating the coexistence of five 

different AMPA subunits in a single Purkinje cell (Lambolez et al., 1993). 

NMDA receptor subunits (NMDARl and NMDAR2A-NMDAR2D) (Morioshi et al., 

1991, Nakanishi, 1992, Monyer et al., 1992) were cloned last and differ 

from other glutamate receptor subunits by large intracellular and 

extracellular domains (Moriyoshi et al., 1991). Additional studies, have 

demonstrated the site critical for control of Câ  permeability and Mg"*̂  

blockade localized on the second transmembrane segment (Buranshev et al., 

1992). Replacement of asparagine by a glutamine residue decreases calcium 

permeability of the channel and slightly reduces magnesium block. 

Interestingly, this site corresponds to the site determining the Ca** 

permeability of AMPA receptor channels. Thus, a single amino acid position 

in a channel-forming region may account in part for differential behavior 

of NMDA and non-NMDA channels. 

The validity of a general ligand-gated receptor model (proposing 

extracellular localization of N and C terminal) for the NMDA receptor was 

questioned in a recent study of the phosphorylation sites for 

phosphorylation by protein kinase C (Whitemore et al., 1993). Their 

localization on C terminal domain suggests intracellular localization of 

the domain and therefore different receptor model. This finding was 

supported by a recent study of the intracellular localization of C-terminal 
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antibodies (Martin et al., 1993). In contrast to non-NMDA channels, when 

expressed in oocytes, homomeric NMDA channels exhibited most of the 

features of the NMDA receptors observed in natural membranes (Moriyoshi et 

al., 1991). 

At the primary afferent synapse, and also at most other synapses of 

the central nervous system the majority of fast EPSPs are mediated by non-

NMDA glutamate receptors (Jahr and Jessell, 1985, Yoshimura and Jessell, 

1989, Gerber and Randic, 1989a, Yoshimura and Nishi, 1993). Even though the 

NMDA subtype of glutamate receptor often contributes to the late component 

of fast EPSP (Gerber and Randic, 1989a, Hestrin et al., 1990) its most 

important role is the mediation of various forms of neuronal plasticity and 

pathology. It is required for induction of LTP in CAl area of hippocampus 

(Nicoll et al., 1988, Collingridge et al., 1983, Collingridge and Singer, 

1990), in striatum and in the spinal dorsal horn (Randic et al., 1993). In 

the spinal cord it also contributes to the generation of slow EPSP (Gerber 

and Randic, 1989b, Gerber et al., 1991) and underlies the wind-up 

phenomenon (Dickenson, 1987, 1991), that can be important in mediation of 

pain. Blockade of NMDA receptor has been shown to prevent the pattern 

formation in neural system (Udin and Scherrer, 1990) and overexcitation can 

lead to epileptogenesis and neurotoxicity (Daw et al., 1993, During and 

Spencer, 1993). 

Metabotropic glutamate receptor 

In addition to the ionotropic receptors that directly activate ion 

conductances to specific ions, glutamate acts also on metabotropic 
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receptors, that are coupled through G-proteins to several different second 

messenger systems (Miller, 1991, Baskys, 1992). The two families of 

glutamate receptors can be distinguished pharmacologically and differ also 

in their molecular structure. The metabotropic glutamate receptor is 

nonselectively activated by quisqualate or ibotenate and selectively 

activated by (±)-trans-l-aminocyclopentane-1,3-dicarboxylic acid (trans-

ACPD) or its active enantiomer 1S,3R-ACPD (Sugiyama et al., 1989, Irving et 

al., 1990). Even though ACPD can module'_e ionotropic Glu receptors, ACPD 

does not directly activate ionotropic Glu receptors. Metabotropic receptor 

function is blocked by 2-amino-3-phosphonopropionate (AP3) (Schoepp et al,, 

1990, Irving et al., 1990) or (S)-4-carboxyphenylglycine and (RS)-a-methyl-

4-carboxyphenylglycine (Eaton et al., 1993) and not by the inhibitors of 

ionotropic Glu receptors, APV and CNQX (Shinozaki et al., 1989). The 

potency of the AP3 varies in different systems and AP3 has been unable to 

block the mGluRl-induced phosphoinositol hydrolysis (Aramori and Nakanishi, 

1992), and hippocampal synaptic depression induced by 1S,3R-ACPD (Goh and 

Musgave, 1993). However, recent study reported that a novel selective 

competitive inhibitor of metabotropic receptor, (RS)-a-methyl-4-

carboxyphenylglycine, is a highly potent suppressor of metabotropic 

receptor-dependent LTP in hippocampus, whereas AP3 was without effect 

(Bashir et al., 1993). The cDNA encoding a phosphoinositide-coupled mGluR 

was cloned by functional expression in Xenopus oocytes (mGluRl) (Masu et 

al., 1991, Houamed et al., 1991). At least four additional cDNAs were 

obtained recently by use of cross-hybridization technique (mGluR 2-5) 

(Tanabe et al., 1992). Metabotropic receptors resemble other G-protein 
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linked receptors and are composed of one unit containing seven putative 

transmembrane domains. They show, however, little sequence homology with 

other G-protein linked receptors (Masu et al.,1991). The characteristically 

large extracellular and intracellular domains, are probably responsible for 

a large variety of interactions of mGluR with second messenger systems. In 

addition to activation of phosphoinositol (Sladeczek, 1985, Sugiyama et 

al., 1987) second messenger pathway, metabotropic glutamate receptor can 

act through activation of phospholipase D and up or down-regulation of 

cyclic AMP-dependent second messenger system (Tanabe et al., 1992, Schoepp 

and Conn, 1993). In situ hybridization has demonstrated differential 

distribution of mGluR subunits in the nervous system (Masu et al., 1991, 

Tanabe et al., 1992, Martin et al., 1992). It is possible that the presence 

of different mGluR subtypes accounts for variability of effect of mGluR 

agonists in different experimental models. 

Electrophysiologic studies have demonstrated that metabotropic 

receptors may play an important role in regulation of neuronal excitability 

and synaptic transmission in the brain (Baskys, 1992). The activation of 

mGluR is capable of depolarizing neurons (Zheng and Gallagher, 1991, 1992, 

Charpak and Gâhwiler, 1991, Batchelor and Garthwaite, 1993) and increasing 

their excitability (Salt and Eaton, 1991) through reduction of voltage-

dependent and Ca^-dependent K^conductances (Stratton et al., 1989, Charpak 

et al., 1990, McCormick and von Krosigk, 1992). However, in cerebellar 

granule cells (±)ACPD reduces excitability of neurons by increasing the 

Ca^-dependent K^conductance (Fagni et al., 1991). In addition to 

modulation of K^conductances* activation of mGluR also affects voltage-
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dependent Ca^channels. A recent study in cultured hippocampal neurons 

showed the inhibitory effect of activation of metabotropic receptor on high 

threshold Ca^ conductance (Lester and Jahr, 1990). Besides modulation of 

passive membrane properties of nerve cells metabotropic GluR modulates also 

synaptic transmission. It can depress both excitatory synaptic transmission 

and inhibitory synaptic transmission (Hestrin et al., 1990, Baskys and 

Malenka, 1991, Lovinger, 1991, Swartz et al., 1993). The depression of 

synaptic transmission that has been observed at hippocampal synapses seems 

to be of presynaptic origin since responses to exogenously applied 

neurotransmitters are not depressed (Hestrin et al., 1990). It is likely 

that inhibition of Ca"*^ channels decreases the release of neurotransmitter 

presynaptically (Swartz et al., 1993). In contrast to these observations, 

recent study reported potentiation of synaptic transmission by the 

activation of metabotropic receptor (Bashir et al., 1993). In addition to 

modulation of presynaptic neurotransmitter release, mGluR can affect 

synaptic transmission also by modulation of postsynaptic neurotransmitter 

receptors. Studies in hippocampus and in oocytes injected with brain mRNA 

showed that the activation of mGluR can enhance the NMDA receptor responses 

(Aniksztejn et al., 1991, Harvey et al., 1991, Kelso et al., 1992) and can 

have a role in the generation of long-term potentiation in the hippocampus 

(Otani and Ben-Ari, 1991, McGuiness et al., 1991, Zheng and Gallagher, 

1992, Bortolotto and Collingridge, 1993, Bashir et al., 1993) and long-term 

depression in cerebellum (Linden et al., 1991). Although AMPA receptor 

plays a key role in expression of both forms of synaptic plasticity trans-

ACPD did not modulate AMPA responses of hippocampal neurons (Aniksztejn et 
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al., 1991, Harvey et al., 1991) and in nucleus tractus solitarious neurons 

(Glaum et al., 1993). However, recent study in hippocampus suggests 

potentiation of AMPA receptor responses as a possible mechanism of 

metabotropic glutamate receptor induced long term potentiation (Bortolotto 

and Collingridge, 1993). 

Modulation of synaptic transmission bv protein phosphorylation 

Protein phosphorylation represents one of the most effective 

mechanisms of control of various cellular processes (Edelman et al., 1987) 

and is particularly important in the nervous system (Drummond, 1984, Dudai, 

1987). Recent studies have demonstrated the importance of phosphorylation 

in regulation of synaptic transmission through actions on presynaptic 

release of neurotransmitter, resting membrane properties of neurons and 

postsynaptic receptor responsiveness (Nairn et al., 1985, Kaczmarek and 

Levitan, 1987, Huganir and Greengard, 1990, Greengard et al., 1993). 

Protein phosphorylation involves the reversible covalent modification 

of hydroxyl groups of serine, threonine and tyrosine in substrate proteins 

by a phosphotransferase reaction. The principal chemical reaction is 

transfer of phosphate from ATP to substrate protein. This reaction is 

catalyzed by enzymes, protein kinases, which are in most cases regulated by 

a complex second messenger system. The introduction of a negatively charged 

phosphoryl group can alter the conformation of a substrate to modify the 

function of enzyme, a cytoskeletal protein, an ion channel or a 

transcriptional activator. These changes, which depend on elevated 
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concentrations of second messengers in the neuron usually last from seconds 

to minutes (Bacskai et al., 1993), much longer than, for instance, the 

changes in membrane potential produced by the activation of ligand-gated 

channels. 

Several neurotransmitter receptors act through modulation of 

phosphorylation processes rather than by direct activation of ion channel 

(eg. a and p adrenergic, muscarinic ACh, metabotropic glutamate, 

serotoninergic, histaminergic, dopaminergic and receptors for neuropeptides 

and rhodopsIn)(Schwartz and Kandel, 1991, Chen and Huang, 1991, Rusin et 

al., 1992, Bekkers, 1993). These receptors are coupled to G proteins, which 

in turn activate the second messenger generating enzymes. Second messengers 

(cyclic AMP, cyclic GMP, phosphoinositol and Ca^), that are the end 

products of second messenger systems are small diffusible molecules . They 

can activate a specific protein kinase or mobilize Ca^^ from intracellular 

stores, thus initiating a change that modifies the cell's biochemical 

state. In addition some of the second messengers (cyclic AMP, cGMP) can 

directly gate an ion channel (Hockberger and Swandulla, 1987, Schwartz and 

Kandell, 1991). The cascade of reactions allows high rate of amplification 

of the external stimuli and allows a complex regulation trough interaction 

of various signals at different steps of the cascade reaction (Edelman, et 

al., 1987). 

The most studied protein kinases are cyclic AMP-dependent protein 

kinase, cGMP-dependent protein kinase, calcium/calomodulin-dependent 

protein kinase and protein kinase C. They are regulated through 

corresponding second-messenger systems and phosphorylate specific substrate 



www.manaraa.com

25 

proteins. The specificity of their actions is defined by a sequence of 

amino acids adjacent to phosphorylation site on the substrate protein 

"consensus phosphorylation site" (Nestler and Greengard, 1984, Huganir and 

Greengard, 1990, Kennelly and Krebs, 1991). The action of kinases is 

balanced by the activity of phosphoprotein phosphatase, the enzyme that 

catalyzes the hydrolysis of covalent phosphate bond. This allows the system 

to maintain a steady-state phosphorylation activity, and by up or down 

regulation control various cellular processes. 

Cyclic AMP-dependent second-messenper system 

The cyclic AMP-dependant second-messenger system is one of the most 

studied second-messenger systems in the nervous system. The central unit of 

the system is the enzyme adenylate-cyclase (Casperson et al., 1987), which 

is regulated by stimulatory and inhibitory G-proteins coupled to membrane 

receptor proteins. The adenylate-cyclase catalyzes generation of cyclic AMP 

from ATP. Four molecules of cyclic AMP bind to two regulatory subunits of 

protein kinase A tetramere (Taylor et al., 1990) and cause dissociation of 

catalytic subunits from regulatory subunits. Catalytic subunits are the 

effector of the second messenger system and phosphorylate substrate 

proteins. The role of cyclic AMP-dependent protein kinase in modulation of 

presynaptic release of neurotransmitters has been well established in 

several different models (Greengard et al., 1972, Castelucci et al., 1980, 

Dudai, 1987, Hu et al., 1993). Also well understood is its role in the 

modulation of passive membrane properties of the nerve cells through 

modulation of voltage-gated channels (Klein et al., 1982, Huganir et al.. 
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1986, Huganir, 1987, Onozuka et al., 1988). On the other hand, the 

modulation of postsynaptically located ligand channels, essential for 

control of synaptic efficacy, has been just recently demonstrated and is 

still not well understood (Huganir et al., 1986, Miles and Huganir, 1988, 

Kirkness et al., 1989, Huganir and Grengard, 1990, Porter et al., 1990, 

Browing et al., 1990, Greengard et al., 1991, Wang et al., 1991). 

In view of the involvement of protein kinases activation in most of 

neuromodulation-related phenomena, it is interesting that currently known 

ionotropic glutamate receptor subunits contain several consensus 

phosphorylation domains for phosphorylation by protein kinase A, protein 

kinase C, Ca''^-calmodulin-dependent protein kinase type II and tyrosine 

kinase (Gasic and Hollmann, 1992). Recent studies have demonstrated that 

activation of protein kinase C can induce potentiation of NMDA-induced 

current responses in rat spinal dorsal horn neurons (Gerber et al., 1989) 

in Xenopus oocytes injected with rat forebrain mRNA (Kelso et al., 1992), 

in trigeminal sensory nucleus (Chen and Huang, 1991) and in hippocampal 

neurons (Aniksztejn et al., 1991). In addition, protein kinase C also 

mediates the potentiation of NMDA responses by activation of metabotropic 

glutamate receptor in hippocampus (Aniksztejn et al., 1991) and by 

activation of /i opioid receptor in trigeminal sensory nucleus (Chen and 

Huang, 1991). Whereas the non-NMDA glutamate receptors seem to be affected 

by the activation of protein kinase C-dependent second messenger system in 

a less consistent manner (Gerber et al., 1989, Aniksztejn et al., 1991, 

Chen and Huang, 1991, Rusin et al., 1992, 1993, Cerne and Randic, 1993), 

they seem to be consistently upregulated by cyclic AMP-dependent second 
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messenger system. Recent studies show, that glutamate receptors gated by 

kainate in white perch retinal horizontal cells, mammalian hippocampal 

neurons, GluR6 glutamate receptor transiently expressed in mammalian cells, 

and GluRl/GluR3 glutamate receptors gated by AMPA expressed in Xenopus 

oocytes can be regulated by cyclic AMP-dependent protein phosphorylation 

(Liman et al., 1989, Chen and Huang, 1991, Greengard et al., 1991, Wang et 

al., 1991, Chavez-Noriega and Stevens, 1992, Keller et al., 1992, Raymond 

et al., 1993). Possible modulation of the NMDA receptors by cyclic AMP-

dependent protein kinase remains less understood (Chen and Huang, 1991, 

Greengard et al., 1991, Wang et al., 1991, McVaugh and Waxham, 1992, Cerne 

et al., 1992). The modulation of the NMDA responses of DH neurons (Gerber 

et al., 1989, Rusin et al., 1992) and Xenopus oocytes injected with rat 

forebrain mRNA (McVaugh and Waxham, 1992) by cyclic AMP-dependent protein 

kinase has been suggested, and maintenance of NMDA-induced currents 

requires presence of ATP intracellularly (MacDonald et al., 1989). However, 

whole cell and single channel analysis revealed no obvious alterations of 

the NMDA channel properties in cultured hippocampal neurons (Greengard et 

al. 1991, Wang et al., 1991). 

The presence of cyclic AMP-dependent second messenger and PKC-

dependent second messenger system in the superficial dorsal horn, was 

demonstrated by high levels of forskolin and phorbol ester binding sites 

(Worley et al., 1986, Mochly-Rosen et al., 1987). The previous studies from 

our laboratory have demonstrated that phorbol esters, the activators of 

PKC, can modulate the synaptic transmission in the spinal dorsal horn 

through enhancement of presynaptic release of EAA and through increased 
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postsynaptic responsiveness of DH neurons to excitatory amino acids (Gerber 

et al,, 1989c). The extraneuronal localization of PKC in spinal dorsal horn 

(Mochly-Rosen et al,, 1987) and the possibility of activation of cyclic 

AMP-second messenger system by activation of PKC (Bell et al,, 1985, 

Rozengourt et al,, 1987) added to the complexity of these findings. The 

possible modulatory role of cyclic AMP-dependent second messenger system in 

modulation of excitatory amino acid mediated synaptic transmission was 

further supported by the fact that forskolin, an activator of adenylate-

cyclase, enhances synaptic and excitatory amino acid responses in rat 

dorsal horn neurons (Gerber et al., 1989c, Rusin et al., 1992). 

The existence of synaptic plasticity phenomena at the level of spinal 

dorsal horn (Randic et al., 1993) and the involvement of protein kinase 

systems in mediation of neuroplasticity phenomena in hippocampus, striatum 

and cerebellum, suggests the possible functional role of protein 

phosphorylation in the modulation of synaptic transmission in the spinal 

dorsal horn. Indeed, recent evidence suggests that cyclic AMP plays a role 

as a second messenger system in the hyperalgesia produced by agents acting 

on primary afferent terminals (Taiwo and Levine 1989 and 1991, Taiwo et 

al., 1990). 
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RATIONALE 

The superficial spinal dorsal horn is an area where primary afferent 

fibers arising predominantly from skin, but also viscera and muscle, 

terminate and form first synaptic relay with dendrites of dorsal horn 

neurons. For this reason, the superficial spinal dorsal horn has been 

regarded as an important site for the initial processing of afferent 

signals directly related to the transmission and modulation of sensory 

information, including pain. 

Anatomical and physiological studies have provided a detailed 

description of termination patterns of primary afferent fibers. Relatively 

well established is also the neurotransmitter role of glutamate in the 

mediation of fast excitatory synaptic transmission at the primary afferent 

synapses in the DH. Besides glutamate, primary afferent fibers contain more 

than ten neuropeptides that act through activation of second messengers and 

are thought to be involved in the modulation of primary afferent 

neurotransmission. Glutamate itself has also a modulatory role in primary 

afferent neurotransmission, since at least metabotropic glutamate receptor 

and NMDA subtype of ionotropic receptor are capable of activation of second 

messengers. 

One of the best studied forms of neuroplasticity at central synapses 

is long term potentiation (LTP) at the hippocampal CAl neurons. A similar 

form of synaptic plasticity has been recently described at the primary 

afferent synapse in the superficial dorsal horn. It has been recently 

demonstrated that induction of hippocampal LTP requires activity of 
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metabotropic glutamate receptor and that the LTP is modulated by the cyclic 

AMP-dependent second messenger system. Since the superficial dorsal horn 

contains high levels of cyclic AMP-dependent second messenger system and 

metabotropic glutamate receptor, it is likely that both systems play an 

important role in the modulation of the primary afferent synaptic 

transmission. 

The present study attempted to estimate the possible modulation of 

excitatory amino activated-responses by the cyclic AMP-dependent second 

messenger system and by activation of metabotropic glutamate receptor. The 

particular interest of the study was to evaluate possible change in 

sensitivity of postsynaptic AMPA, KA and NMDA receptors of DH neurons by 

cyclic AMP and activation of mGluR. Modulation of ionotropic glutamate 

receptors has not been characterized in detail as yet, but may represent an 

important mechanism of regulation of synaptic efficacy at the primary 

afferent synapse. 

We have utilized two different technical approaches. The first part 

of the study was done using the in vitro transverse spinal slice 

preparation. The standard sharp electrode voltage recordings were obtained 

from dorsal horn neurons. This preparation enabled us to record for 

prolonged periods of time from relatively intact dorsal horn neurons with 

preserved primary afferent-dorsal horn neuronal circuitry. It also allowed 

better visual access than the in vivo spinal cord preparation and fast 

application and removal of drugs. However, there are also limitations of 

the slice preparation studies such as diversity of neurons in the dorsal 

horn, difficulty to isolate single postsynaptic neuron and control its 
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membrane potential and internal milieu. Therefore in the second part of the 

study we utilized the preparation of acutely isolated DH neurons and whole-

cell recordings of EAA-induced current responses. The latter approach 

allowed us isolation of postsynaptic sites, control of membrane potential 

and manipulateion of the intracellular environment by intracellular 

administration of large molecules, like catalytic subunit of cyclic AMP-

dependent-protein kinase. The major disadvantages of this approach are the 

damage of neurons during the dissociation process and the alteration of 

normal intracellular environment. 

In the present study we have presented evidence that the activation 

of the adenylate cyclase-cyclic AMP-dependent protein kinase system may be 

involved in the enhancement of primary afferent neurotransmission. In 

addition to increase of presynaptic release of neurotransmitters and 

depolarization of resting membrane potential, the cyclic AMP-dependent 

protein kinase system enhances sensitivity of postsynaptic AMPA, KA and 

NMDA receptors, probably through direct phosphorylation of receptor-channel 

complex or receptor channel complex-associated regulatory protein. The 

study further demonstrated that glutamate through its action at the 

metabotropic receptor enhances the postsynaptic responses of AMPA and NMDA 

glutamate receptor subtypes. 

Our study suggests that in the rat spinal dorsal horn the adenylate 

cyclase-cyclic AMP-dependent second messenger system and the activation of 

metabotropic glutamate receptor may be involved in modulation and 

integration of sensory information including pain. 
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PAPER I. CYCLIC ADENOSINE 3'5'-MONOPHOSPHATE POTENTIATES 

EXCITATORY AMINO ACID AND SYNAPTIC RESPONSES OF RAT 

SPINAL DORSAL HORN NEURONS 

^Published as a research paper by R. Cerne, M. Jiang and M. Randic. 1992. 

Brain Res. 
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Intracellular recordings were made from rat dorsal horn neurons In the 

in vitro slice preparation to study the actions of cyclic adenosine 3',5'-

monophosphate (cyclic AMP). In the presence of TTX, bath application of 

the membrane permeable analogue of cyclic AMP, 8-Br cyclic AMP (25-100/iM) 

caused a small depolarization of the resting membrane potential accompanied 

by a variable change in membrane input resistance. In addition, 8-Br 

cyclic AMP caused a long-lasting increase in the spontaneous synaptic 

activity and the amplitude of presumed monosynaptic excitatory postsynaptic 

potentials evoked in the substantia gelatinosa neurons by orthodromic 

stimulation of a lumbar dorsal root. When the fast voltage-sensitive Na 

conductance was blocked by TTX, 8-Br cyclic AMP enhanced in a reversible 

manner, the depolarizing responses of a proportion of dorsal horn neurons 

to N-methyl-D-aspartlc acid (NMDA), a-amino-3-hydroxy-5-methyl-4-

Isoxazolepropionic acid (AMPA), quisquallc acid (QA) and kainlc acid (KA). 

The effects of 8-Br cyclic AMP on the resting membrane potential and the 

NMDA response of dorsal horn neurons were mimicked by reducing 

phosphodiesterase activity with bath application of 3-isobutyl-l-

methylxanthine, but not by cyclic AMP applied extracellularly. Moreover, 

we have found that intracellular application of a protein inhibitor of 

cyclic AMP-dependent protein kinase (PKI) into dorsal horn neurons prevents 

the 8-Br cyclic AMP-induced potentiation of the NMDA response of these 

cells. These results suggest that in the rat spinal dorsal horn the 

activation of the adenylate cyclase-cyclic AMP-dependent protein kinase 



www.manaraa.com

34 

system may be involved in the enhancement of the sensitivity of 

postsynaptic excitatory amino acid (NMDA, AMPA, KA) receptors and 

modulation of primary afferent neurotransmission, including nociception. 
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INTRODUCTION 

Neurotransmitter action at synapses can be regulated through 

activation of second messenger systems (31,33,47,50,63). One of the most 

studied second messengers is 3',5' cyclic adenosine monophosphate (cyclic 

AMP), that is produced by activation of adenylate cyclase and in turn 

activates cyclic AMP-dependent protein kinase (protein kinase A, PKA). 

Cyclic AMP binds to the regulatory subunit of PKA, releasing the catalytic 

subunit that catalyzes the phosphorylation of a wide variety of cytoplasmic 

and membrane proteins (7,26,63,73). Such phosphorylation can alter the 

functional properties of proteins and modulate various physiological 

processes, including neurotransmitter release (8,33,63), and voltage-gated 

(36,37,46,65) and ligand-gated channels (6,32,38,39,45,56,69,83). 

Recently, a new signalling mechanism for cyclic AMP has been discovered 

that is independent of kinase activation (52). 

Glutamate, or a related amino acid, appears to be the major candidate 

for the fast and the slow excitatory neurotransmitter in the mammalian 

brain (13,54,86) and spinal cord (28-30,40-42,74,91). The functional 

diversity of glutamate is reflected by the presence of multiple receptors 

that can be classified into two groups: ionotropic and metabotropic 

(53,57,75,86). Ionotropic receptors contain integral cation-specific ion 

channels, whereas metabotropic receptors are coupled to phospholipase C via 

G-proteins, The ionotropic receptors are subdivided into two distinct 

subtypes; N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors 

activated by a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) 
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and kainic acid (KA). Participation of both AMPA/kainate and NMDA 

receptors in the generation of the fast and the slow spinal EPSPs has been 

demonstrated (19-23,28-30,42,91). Recently AMPA/KA, NMDA and metabotropic 

receptors have been characterized by molecular biology cloning techniques 

(5,25,34,35, 44,51,58,61,72,87). The findings that the spinal dorsal horn 

contains high density of binding sites for [®H]-forskolin (89), that 

forskolin, an adenylate cyclase activator and caffeine and theophylline 

inhibitors of phosphodiesterase enzymes, depolarize dorsal horn neurons and 

increase their responses to NMDA and QA (10,31,43), and that the glutamate 

and kainate responses of cultured hippocampal neurons are enhanced by 

cyclic AMP-dependent protein kinase (32,83), raised the possibility that 

cyclic AMP through the activation of protein kinase A may play a functional 

role in the excitatory synaptic transmission in the spinal dorsal horn by 

modulating signal transduction at various subclasses of excitatory amino 

acid (EAA) receptors. In this paper we report on evidence, that the 

elevation of intracellular concentration of cyclic AMP by membrane 

permeable analog, 8-Br cyclic AMP, and application of phosphodiesterase 

inhibitor, IBMX, depolarize rat spinal dorsal horn neurons, enhance primary 

afferent neurotransmission and the responses of dorsal horn neurons to 

specific EAA receptor ligands. In addition, specific protein kinase 

inhibitor (PKI), that binds with high affinity to active catalytic subunit 

of cyclic AMP-dependent protein kinase (16), prevented the 8-Br cyclic AMP-

induced depolarization of the resting membrane potential and the 

potentiation of NMDA responses of dorsal horn neurons. Preliminary reports 

of some aspects of this work have been published (10,43). 
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MATERIALS AND METHODS 

Transverse slices were obtained from Sprague-Dawley rats of both sexes 

(16-32 days old) by using a technique that has been described elsewhere 

(31,59,60). Briefly, after the animal was anesthetized with ether, a 

segment of the lumbosacral (L^-S^) spinal cord was dissected out and 

sectioned with a Vibratome to yield several transverse slices, 300-450 /im 

thick, with short (3-5 mm) dorsal rootlets. After the incubation for 1 h 

in oxygenated (95% O2 + 5% CO2) control solution (in mM; NaCl 124, KCl 5, 

KH2PO4 1.2, CaClg 2.4, MgSO* 1.3, NaHCOg 26, glucose 10, pH 7.4 at 30 ± 

1°C), a slice was transferred into a recording chamber, where it was 

submerged beneath an oxygenated superfusing medium (flow rate about 3 

ml/min) containing lowered concentration of potassium ions (1.9 mM KCl). 

The use of a high-K^ solution during cutting and incubation of the slices 

seemed to improve their viability as assessed electrophysiologically in the 

same preparation. 

Conventional electrophysiological techniques were used for 

intracellular recording from dorsal horn neurons (laminae I-V), as 

described (59). Under visual control, a single fiber-filled glass 

microelectrode filled with 4 M potassium acetate (pH 7.2; DC impedance: 75-

150 MO) was placed in the dorsal horn, and neurons impaled by oscillating 

the capacity compensation circuit of a high input impedance bridge 

amplifier (Neurodata; Axoclamp 2). Cells were activated synaptically by 

electrical stimulation of primary afferent fibers. A coaxial stainless 

steel stimulating electrode (o.d. of inner and outer electrodes being 25 
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and 200 ;im, respectively; Frederick Haer Co.) positioned on a lumbar dorsal 

rootlet was used. Single (0,02-0.5 ms pulses, 1-25 V) stimuli to lumbar 

dorsal roots were used to elicit fast excitatory synaptic potential (EPSP). 

The synaptic responses were stored on diskettes of a digital oscilloscope 

(Nicolet, model 4092) until processed and printed out onto a digital 

plotter. A DC pen-recorder (Gould 220 or 2200S S) was used to record 

membrane potential and EAA responses continuously. 

a-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), 

quisqualic acid (QA; Cambridge Research Biochemicals, CRB), kainic acid 

(KA; CRB), and N-methyl-D-aspartic acid (NMDA; CRB, Tokris), were applied 

extracellularly by positive pressure ejection (1-5 kPa; Neuro Phore, 

Medical Instruments) from micropipettes (drug concentration: 10"''-10"^ M for 

10-200 ms) with tip diameters of 5-10 fim. Positioning of these 

micropipettes within 50-200 /im of the cell body reliably produced 

excitatory amino acid responses. Drugs applied via the superfusing medium 

were: 8-bromoadenosine 3'5'-monophosphate (8-Br cyclic AMP, sodium salt), 

3,'5'cyclic adenosine-monophosphate (cyclic AMP) , 3-isobutyl-1-methyl-

xanthine (IBMX), tetrodotoxin (TTX), all were obtained from Sigma (8-Br 

cyclic AMP, also from Aldrich). Stock solutions of 8-Br cyclic AMP, cyclic 

AMP and protein kinase inhibitor (PKI) were made in distilled water, and 

that of IBMX in dimethyl sulfoxide, and then frozen in aliquots to be used 

in single experiments. The aliquots were diluted in oxygenated Krebs 

solution prior to the bath administration. Protein kinase Inhibitor (PKI, 

45 /iM/ml; activity 1 ng protein inhibits 4000 phosphorylating units of 

protein kinase A; Sigma)(16), in 4M K-acetate was applied intracellularly. 
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by allowing to leak from the electrode without any driving current. Most 

of results (Figs. 3-9) are expressed as percent of control response that 

was determined as the average of first three responses recorded prior to 

drug administration. They are reported individually or as mean ± S.E.M. 

For statistical analysis we used one way ANOVA and statistical significance 

between means was determined by Student-Newman-Keuls test: *P < 0.05; **P < 

0 .01 .  
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RESULTS 

A total of 59 dorsal horn neurons in laminae I-V of the spinal dorsal 

horn was studied. Dorsal horn neurons exhibited mean resting potential and 

action potential amplitude of -73.0 ± 0.8 mV (m ± S.E.M.; range: -60 to -88 

mV), and 81.4±2.9 mV (range: 56±102 mV), respectively. 

Cyclic AMP reversibly depolarizes dorsal horn neurons 

When synaptic transmission was blocked by tetrodotoxin (TTX, 5 x 10"? 

M), bath application of the membrane permeable analogue of cyclic AMP, 8-Br 

cyclic AMP (2.5 x 10"^ - 10"^ M for 5-22 min) caused a small but long-

lasting, dose-dependent (5 x 10"^ M cyclic AMP: 2.6 ± 0.3 mV, n~16; 5 x 10"* 

M cyclic AMP: 5.3 ± 0.4 mV, n=12) depolarization of the membrane potential 

in 62% (n=42) of examined cells (Fig. 1). The onset of the effect was 

relatively slow (2.6 ± 0.5 min) and outlasted the time of bath application 

(by 11.2 ± 4.7 min). The membrane input resistance, as monitored by the 

amplitude of hyperpolarizing electrotonic potentials, showed either no 

apparent change or a small increase (average change about 10%) or decrease 

during 8-Br cyclic AMP-induced depolarization of the dorsal horn neurons. 

The slow time course of the depolarization made it possible to clamp 

manually the membrane potential during the response. The effects of 8-Br 

cyclic AMP on the membrane potential and input resistance of dorsal horn 

neurons were not mimicked by cyclic AMP applied extracellularly (n=2). 

The depolarizing effect was present also in nine cells when the 

inhibitor of phosphodiesterase activity, 3-isobutyl-1-methyl xanthine 
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Fig. 1. Summarized results showing the depolarization of the 
membrane potential of rat spinal dorsal horn neurons caused 
by 8-Br cyclic AMP and IBMX, and the attenuation of the 
effect by PKI. In the presence of TTX (5X10"'M) , 
super fus ion of spinal cord slices with 50/iM (open bar, n—16) 
or 500 fiH (hatched bar. n=12) 8-Br cyclic AMP for 5-22 min 
produced a dose-dependent depolarization of rat dorsal horn 
neurons. When microelectrodes containing PKI (100 mg/ml in 
4M K-acetate, solid bar) were used, the 8-Br cyclic AMP-
induced depolarization was markedly attenuated. Bath 
perfusion with a phosphodiesterase inhibitor, IBMX (10"^ -
2xlO"®M; double-hatched bar) produced a depolarization that 
was similar in magnitude to the one evoked by 50^M 8-Br 
cyclic AMP. Statistical significance of results is marked 
by asterisk: **P<0.01, *P<0.05. Resting membrane potential 
(Vm) -72.6±0.8mV; 18-32-day old rats. 
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(IBMX; 10"* - 2x10"^ M for 5-20 min) was bath-applied (Fig. 1). 

Next, we examined the possible involvement of cyclic AMP-dependent 

protein kinase in the membrane action of 8-Br-cyclic AMP by utilizing a 

highly specific protein inhibitor of cyclic AMP-dependent protein kinase 

(PKI; 16). When PKI (45 /iM/ml) was intracellularly applied into neurons 

prior to 8-Br cyclic AMP application, the depolarizing effect of the 8-Br 

cyclic AMP was either substantially attenuated or completely blocked in 

five tested neurons (Fig. 1). 

Potentiation of excitatory postsynaptic potentials by 8-Br cyclic AMP at 

primary afferent synapses with substantia gelatlnosa neurons 

When we used dorsal root electrical stimulation to evoke EPSPs in 

substantia gelatinosa neurons we obtained 10 of 14 neurons that followed 

the repetitive stimulation at 10 Hz, had constant delay after stimulus 

artifact and kept the same smooth shape throughout the experiment. On the 

basis of these criteria we presumed that these neurons are monosynaptically 

connected to primary afferent fibers. It has been earlier reported that a 

high proportion of primary afferent-evoked EPSPs recorded from the 

substantia gelatinosa neurons appear to be monosynaptic (90). 

Bath application of 8-Br cyclic AMP (2.5x10'^ - 10'* M for 5-15 rain) to 

a slice caused a prolonged, but reversible increase, in the peak amplitude 

of the fast presumed monosynaptic EPSPs (Fig. 2) evoked in the substantia 

gelatinosa neurons by electrical stimulation of a lumbar dorsal root. In 

several cells, the EPSP grew large enough to trigger action potentials. 
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Fig. 2. Potentiation of fast excitatory synaptic transmission at 
primary afferent synapses with neurons in substantia 
gelatinosa. A, an apparent monosynaptic EPSP evoked in a 
substantia gelatinosa neuron by single electrical stimuli 
(8,5V, 0.1ms) applied to a lumbar dorsal root prior to and 
after 8-Br cyclic AMP (50/iM for 5 min) addition to the 
superfusing fluid. B, the graph shows the peak EPSP 
amplitude plotted as a function of time; letters (a-c) mark 
the individual responses illustrated above the graph (A). 
8-Br-cyclic AMP was applied at time zero (arrow). Resting 
membrane potential (V^) : -85mV. 7-day-old rat. Inset in 
this and in the subsequent figures shows approximate 
location of a dorsal horn neuron determined by light 
microscopic inspection of the slices. 
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The onset of the action of 8-Br cyclic AMP varied from 3-9 min in 

differentsubstantia gelatinosa neurons, and the effect usually lasted 

between 5 and 20 min (Fig.2B). The potentiating effect was present in 9 of 

10 tested cells, where it often occurred in the absence or after a minimal 

change in membrane potential and input resistance. The average enhancement 

in the EPSP amplitude amounted to 137.8±9.8% (mean ± S.E.M., n - 9). 

With higher concentrations (10"''-10'^M for 5 min) of 8-Br cyclic AMP, 

however, a small decrease of the peak amplitude of EPSP was observed in all 

of 4 tested cells. With 10"®M 8-Br cyclic AMP the depression varied 

between 40-62% of the control EPSP amplitude. The depressent effect was 

accompanied by a hyperpolarization of the membrane potential in 2 cells. 

In another two cells the EPSP was affected in a biphasic manner by addition 

of 8-Br cyclic AMP: during the presence of 8-Br cyclic AMP in the bath the 

EPSP was depressed and after wash-out of 8-Br cyclic AMP the EPSP was 

potentiated. One possibility that has not been excluded in these 

experiments is that the depression was caused by action of 8-Br cyclic AMP 

on adenosine receptors. 

In more than half of tested cells (n=10), 8-Br cyclic AMP caused an 

increase in the frequency and amplitude of presumptive spontaneous EPSPs 

and occasionally evoked spike discharge. The response could have been 

generated by the firing of previously silent afferent fibers or spinal 

interneurons. 

Cyclic AMP applied into a bath, the compound unable to penetrate the 

neuronal membrane, did not enhance the evoked EPSPs. 
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8-Br-cycllc AMP enhances the responsiveness of dorsal horn neurons to 

glutamate receptor agonists 

The spinal dorsal horn, especially the substantia gelatinosa, contains 

high levels of binding sites for forskolin (89). Thus one possible 

mechanism that could account for the 8-Br cyclic AMP-induced increase of 

the synaptic strength in the substantia gelatinosa neurons is through the 

regulatory action of the cyclic AMP second messenger system in the signal 

transduction at various subclasses of excitatory amino acid receptors. 

Since most of examined dorsal horn neurons responded with depolarization of 

their membrane potential to glutamate and selective agonists of EAA 

receptors, the effects of cyclic AMP-active agents on the postsynaptic 

depolarizing responses of dorsal horn neurons to NMDA, AMPA, QA and KA were 

examined in the presence of TTX (SxlO'^M) in superfusing medium. 

In experiments involving pressure application of NMDA we omitted Mg^"*^ 

ions from the bathing medium, since it is known that the NMDA ionophore is 

gated by Mg^^ ions in a voltage-dependent manner and that this block is 

partially relieved by removing extracellular Mg^^ (4,55,64). Glutamate 

receptor agonists (NMDA, AMPA, QA and KA) were applied at regular 2-3 min 

intervals by local pressure microinjection (10"*-10"^M for 10-200ms, 1-5 

kPa) in the vicinity (50-200 ̂ m) of the recording sites. During testing of 

EAA responses, the membrane potential as a routine was manually clamped to 

its control value by injecting positive d.c. current through the 

microelectrode. A total of 48 neurons was tested with bath-applied 8-Br 

cyclic AMP (2.5x10"^ - 2xlO"^M) ; over 90% of the experiments were done using 
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the concentrations of 5xlO"^M and 5xlO"''M. 

Enhancement of the NHDA responses by 8-Br cyclic AMP in rat dorsal horn 

neurons 

A significant increase in the peak amplitude (to 172 ± 13.2% of 

control, n-9) and the half-decay time (to 156.3 ± 5.2%) of the depolarizing 

potential induced by NMDA was found after bath administration of 8-Br 

cyclic AMP in all examined cells (n=9), as shown in Figs. 3,4,6. After 

washing with a superfusing solution for 15-20 min, the NMDA response in 

some cells almost fully recovered (amplitude: to 107.3 ± 5.2%; duration: to 

106.5 ± 3.7%). In general the onset of action of 8-Br cyclic AMP was slow 

(4.7±3.1 min) and outlasted the drug application on average by 16.1 ± 2.8 

min. 

One possibility that could account for the actions of 8-Br cyclic AMP 

on the rat dorsal horn neurons is that the compound might be inducing its 

effects by binding to extracellular adenosine receptors, rather than by 

promoting cyclic AMP-dependent intracellular processes. To examine this 

possibility, adenosine (1-50 /xM) and cyclic AMP were bath-applied to dorsal 

horn cells. In contrast to 8-Br cyclic AMP, adenosine caused a dose-

dependent hyperpolarization of the membrane potential accompanied by a 

decrease in membrane input resistance, in agreement with our previous 

report (43). For comparative reasons, 3 cells were tested with bath-

applied 3',5'-cyclic AMP, the compound unable to penetrate the neuronal 

membrane. While 3',5'-cyclic AMP (lOO/xM) either did not induce any change, 
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Fig. 3. Summarized results showing the enhancement of the NMDA response of 
dorsal horn neurons caused by 8-Br cyclic AMP or IBMX and blockade of 
the effect by PKI. In the presence of TTX (5X10"'M) bath-applied 8-Br 
cAMP (5xlO-=M-5xlO-%; n-9; double-hatched bar) or IBMX (10-'*M-2xl0-%; 
n-4; hatched bar) produced increases in the peak amplitude (A) and in 
the half-decay-time (B) of the NMDA-induced depolarization. When the 
microelectrodes contained PKI (100 mg/ml) the enhancement of the NMDA 
responses of four dorsal horn neurons to 8-Br cAMP was prevented. 
Statistical significance in relation to the PKI-treated group is marked 
by asterisks. Vm, -72.6 ± 0.8 mV, 18-32-day-old rats. 
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Fig. 4. 8-Br cyclic AMP, but not 3',5' cyclic AMP, increases sensitivity of a 
dorsal horn neuron to NMDA. In the presence of TTX (5 x 10"'M) , NMDA 
(10"^M, 0.25s, 5kPa) was applied by positive pressure from micropipette 
with a tip diameter of about S/fm at 3 min intervals. Whereas the bath 
application of 3',5'cAMP (5x10"% for 8 min) slightly depressed the 

depolarizing response to NMDA (Ab'), when the same neuron was superfused 
by 8-Br cAMP (5xlO"% for 9 min) the depolarizing response was 
potentiated (Ab). Graphs show normalized values of the peak NMDA-
induced depolarization (B) and the half-decay-time of the NMDA response 
(C), as a function of time. Small letters on the graphs denote the 
responses illustrated in A. Vm, -83mV, 32-day-old rat. 
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or caused even a small decline (Fig. 4B,C) in the sensitivity of dorsal 

horn neurons to NMDA, the NMDA response consistently increased after 

addition of 8-Br cyclic AMP to the same cells (Fig. 4A-C). Since these two 

agents, adenosine and cyclic AMP, did not mimic the actions of 8-Br cyclic 

AMP, and indeed had opposite effects on resting membrane potential and 

neuronal input resistance, it seems unlikely that 8-Br cyclic AMP produces 

its effects through an adenosine receptor. 

Next, the effect of the endogenous cyclic AMP on the sensitivity of 

the postsynaptic membrane of dorsal horn neurons to NMDA was examined under 

conditions of reduced phosphodiesterase activity. If the 8-Br cyclic AMP-

induced increase of the depolarizing response of dorsal horn neurons to 

NMDA is mediated through cyclic AMP then reducing the activity of this 

enzyme should potentiate the response to NMDA. To inhibit 

phosphodiesterase activity we used IBMX, an agent which has been shown to 

increase cyclic AMP levels in brain slice tissue (76). As illustrated in 

Figs. 3 and 5, bath-applied IBMX (10"* - 2x10"%) reversibly enhanced the 

peak amplitude (to 127.0 ± 8.7%) and the half-decay time (to 120.7 ± 3.5%) 

of the NMDA-induced depolarization in 4 cells. 

The enhancement of the NMDA response by 8-Br cyclic AMP is attenuated by a 

specific inhibitor of cyclic AMP-dependent protein kinase (PKI) 

Cyclic AMP-dependent protein kinase (protein kinase A, PKA) has been 

postulated to mediate most, if not all, of the effects of cyclic AMP in 

nerve cells (63). Therefore, we next examined whether the intracellular 
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Fig. 5. Phosphodiesterase inhibitor IBMX increases the depolarizing response of 
a dorsal horn neuron to NMD A. A, in the presence of TTX (5xlO"^M) , bath 
applied IBMX (SxlO'^'M, for 3.5 min) enhanced the depolarization produced 
by pressure application of NMDA (lO'^M, 0.16s, 5kPa) . Graphs show the 
time course of changes in the peak NMDA-induced depolarization (B) and 
the half-decay-time (C). Vm, -70mV, 19-day-old rat. 
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injection of a highly specific protein inhibitor of PKA, (PKI, 16) could 

block the effect of 8-Br cyclic AMP in order to establish that PKA, 

possibly through protein phosphorylation, was mediating the actions of 8-Br 

cyclic AMP in the rat dorsal horn neurons. When PKI (45 /iM/ml) was applied 

intracellularly for 40-65 min prior to 8-Br cyclic AMP (5xlO"*M) 

administration, the increase in the NMDA-induced depolarization usually 

seen after 8-Br cyclic AMP, was either markedly reduced or completely 

abolished in 4 cells (Fig. 3 and Fig. 6A, right traces). The latter result 

indicates that activation of PKA in the neuron being recorded from is 

required for the enhancement of the NMDA response. This finding however, 

did not rule out the possible contribution of presynaptic effects. 

8-Br cyclic AMP enhances the depolarizing responses of dorsal horn neurons 

to AMPA, QA, and KA 

In addition to the findings with NMDA, the postsynaptic 

depolarizations induced by local pressure microinjection of AMPA (Fig 7), 

QA (Fig. 8) and KA (Fig. 9) were, in the presence of TTX, also affected 

after bath application of 8-Br cyclic AMP in a proportion of rat dorsal 

horn neurons. 8-Br cyclic AMP, bath-applied in concentrations of 50-500 /iM 

for 8-16 min increased the peak amplitude of the AMPA-induced 

depolarization (to 142.5 ± 12%) in 5 of 8 tested cells, but consistently 

increased the duration (to 143.7 ± 8.9%, n=8) of the AMPA response in all 

cells examined. The decrease in the amplitude of the AMPA response was 

present in 2 cells and one cell was not affected. An example of the 
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Fig. 6. PKI inhibits the enhancing effect of 8-Br cAMP on the NMDA-induced 
depolarization. In the same area of a slice, intracellular recordings 
were made from two different dorsal horn neurons in the presence of TTX 
(SxlO'^M). Whereas in the neuron impaled with 4M K-acetate-filled 
microelectrode, Vm, -78mV), bath-applied 8-Br cyclic AMP (5xlO"*M for 9 
min) potentiated (Ab) the depolarizing response to NMDA (lO'^M, 0,1s, 
5kPa), in the second neuron impaled by 4M K-acetate + PKI (45pM/ml) -
filled microelectrode (Vm, -80mV) , 8-Br cyclic AMP (5xlO"*M for 11 min) 
was without simmilar effect (Ab'). Graphs show normalized values of the 
peak NMDA-induced depolarization (B) and the half decay time (C). 25-
day- old rat. 
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Fig. 7. 8-Br cyclic AMP increases sensitivity of a dorsal horn neuron to AMPA. 
In the presence of TTX (SxlO'^M), bath applied 8-Br cAMP (5x10"% for 11 
min) enhances the depolarizing response (Ab) of a dorsal horn neuron 
(inset) to AMPA applied by pressure ejection (SxlO'^M, 60ms, 0.9 kPa) . 
Graphs show the normalized values of the AMPA-induced peak 
depolarization (B) and half-time-duration (C) of the AMPA responses. 
Vm, -78mV, 26-day-old rats. 
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Fig. 8. 8-Br cyclic AMP increases sensitivity of a dorsal horn neuron to QA. In 
the presence of TTX (5xlO"^M), bath-applied 8-Br cyclic AMP (5xlO"*M for 
7 min) augmented the depolarizing response (Ab) of a dorsal horn neuron 
(inset) to QA applied by pressure ejection (2.5xlO"*M, 40ms, 2.7 kPa). 
Graphs show the normalized values of the QA-induced depolarization (B) 
and half-time duration (C) of the QA-response. Vm, -74mV, 21-day-old 
rat. 
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Fig. 9. 8-Br cyclic AMP increases sensitivity of a dorsal horn neuron to KA. In 
the presence of TTX (5xlO"^M), bath-applied 8-Br cyclic AMP (5xlO"*M for 
22 min) enhanced the depolarizing response (Ab) of a dorsal horn neuron 
(inset) to KA applied by pressure ejection (lO'^M, 0.15s, 0.9kPa). 
Graphs show the normalized values of the KA-induced depolarization (B) 
and half-time duration (C) of the KA-response. Vm, -72mV, 25-day-old 
rat. 
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enhancement of the AMPA response by 8-Br cyclic AMP is shown in Fig. 7. 

8-Br cyclic AMP reversibly increased the peak amplitude (to 120.9 ± 

6.8%) and half-decay time (to 164,2 ± 11.7%) of the QA-induced 

depolarization in 8 of 15 dorsal horn neurons examined (Fig. 8). However, 

in 2 cells a reduction in the QA response was observed. 

The KA-induced depolarization was increased in the peak amplitude in 4 

of 9 neurons (to 142.7 ± 7.3%) and the half decay-time (to 139.1 ±4.8%) in 

7 neurons (Fig. 9) after application of 8-Br cyclic AMP (50-500 /iM for 5-20 

mins). 
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DISCUSSION 

The results presented in this paper indicate that the intracellular 

second messenger, the adenylate cyclase-cyclic AMP-dependent protein kinase 

system, potentiates the fast excitatory synaptic potentials at primary 

afferent synapses with substantia gelatinosa neurons. In addition, 

activation of this system modifies the resting membrane properties of 

dorsal horn neurons, enhances their responsiveness to excitatory amino 

acids and increases the probability of neurotransmitter release, as 

suggested by an increase in the frequency of spontaneous postsynaptic 

potentials. 

Cyclic AMP (25-100/JM), applied in the form of the membrane permeable 

analogue, 8-Br cyclic AMP, causes a small depolarization of the resting 

membrane potential. This finding is consistent with the results obtained 

in the rat hippocampal CAl pyramidal neurons (49) and the locus coeruleus 

neurons (84), but it differs from the early studies in the hippocampus 

showing that cyclic AMP, or dibutyryl cAMP, caused inhibition of 

spontaneous activity and hyperpolarization of the CAl cell membrane 

potential (78). 

Cyclic AMP enhances the sensitivity of dorsal horn neurons to exogenous 

excitatory amino acids 

When synaptic transmission was blocked by TTX, 8-Br cyclic AMP 

enhanced, in a reversible manner, the depolarizing responses of most dorsal 
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horn neurons to NMDA, and in a proportion of examined cells to AMPA, QA, 

and KA. In addition we found that the exposure of slices to forskolin 

(10), an activator of the catalytic subunit of adenylate cyclase (77) or 

IBMX, a phosphodiesterase inhibitor, produces effects similar to the 8-Br 

cyclic AMP on the responses of dorsal horn cells to NMDA. 

Our finding of heterogeneity in the population of responses of dorsal 

horn neurons to exogenous excitatory amino acids may be related to 

heterogeneous population of neurons existing in the rat spinal dorsal horn, 

including the outer layers. 

Although in our experiments the elevation of the Intracellular cyclic 

AMP concentration enhanced the sensitivity of EAA receptors in a proportion 

of the rat spinal dorsal horn neurons, the precise molecular mechanisms 

involved and the identity of endogenous substance(s) participating in the 

effect is presently unknown. To test the hypothesis that activation of PKA 

in the dorsal horn neuron being recorded from is required for the 

enhancement of NMDA responses, a highly specific inhibitor of PKA (16) was 

included into microelectrode solution and allowed to dialyze into cells. 

The PKI (in the range of 1-5 /iM when tested at or below Km values of 

appropriate protein substrates) inhibits catalytic activity of PKA by 

interacting specifically with free catalytic subunits dissociated from the 

holoenzyme in response to stimulation by cyclic AMP (2,3,16). In the 

presence of PKI (45 pM/ml), as our data show, the depolarization of the 

resting membrane potential (Fig. 1) and the enhancement of the NMDA 

responses of rat dorsal horn neurons caused by 8-Br cyclic AMP, were 

markedly attenuated (Figs. 3 and 6). These data suggest that PKA, possibly 



www.manaraa.com

68 

through protein phosphorylation, may be involved in the modulation of the 

NMDA receptor function. In dorsal root ganglia (DRG) neurons (14) some 

invertebrate neurons (1,9,18,65), and rat locus coeruleus neurons (85), the 

electrophysiological effects of cyclic AMP-active agents have been reported 

to be inhibited by the same specific inhibitor of PKA enzyme as was 

employed in this study. 

Two recent reports have suggested a role for the cyclic AMP-dependent 

protein kinase system in the regulation of the function of AMPA/KA 

receptors and fast excitatory synaptic transmission (32,83). In these 

electrophysiological studies the currents Induced by activation of 

glutamate and AMPA/KA receptors were potentiated by agents that activate 

adenylate cyclase (forskolin) and that specifically modulated cyclic AMP-

dependent protein kinase activity. Thus, the current responses were 

potentiated by intracellular application of the catalytic subunit of 

protein kinase A and depressed by a competitive inhibitor of this enzyme. 

Single channel analysis revealed that a cyclic AMP-dependent PKA increases 

the opening frequency and the mean open time of the non-NMDA-type glutamate 

receptor channels. These results suggested either that the non-NMDA 

channels themselves are phosphorylated directly or that their function is 

regulated indirectly through phosphorylation of membrane proteins. 

Although modulation of the NMDA responses of rat dorsal horn neurons 

by protein kinase C (15,31) and protein kinase A (31) has been suggested by 

previous and the present studies, single channel analysis revealed no 

obvious alterations of the NMDA channel properties in cultured hippocampal 

neurons (32). However, in the whole-cell voltage-clamped rat dorsal horn 
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neurons we recently observed the enhancement of the NMDA-induced current 

responses upon Intracellular application of the catalytic subunit of 

protein kinase A (unpublished observations). The latter result contrasts 

with the result of Greengard et al. (32), who concluded that modulation of 

NMDA channels by PKA is absent or at least less prominent than modulation 

of non-NMDA receptor channels, It is not clear why these differences exist 

but they could be due to differences in the preparation used and 

multiplicity of NMDA receptors. 

Cyclic AMP enhances synaptic responses of dorsal horn neurons 

The results presented in this paper indicate that the adenylate 

cyclase-cyclic AMP-dependent protein kinase system, potentiates the fast 

excitatory synaptic transmission in the rat spinal dorsal horn. There are 

several possible sites of action for 8-Br cyclic AMP in the slice 

preparation. It can enhance the release of neurotransmitter(s) from 

presynaptic terminals, it can enhance the responsiveness of postsynaptic 

neurons to released neurotransmitter(s), or it can increase the 

interneuronal activity in the dorsal horn. In the absence of significant 

changes in resting membrane potential and neuronal input resistance, the 

increased synaptic efficacy, as manifested by the increase in the amplitude 

of the evoked EPSP in the substantia gelatinosa neurons following 

administration of 8-Br cyclic AMP, could be due at least in part to 

increased probability of release of vesicles presynaptically (8,32). 

Previous studies suggested that cyclic AMP enhances transmitter release 
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form DRG terminals (19,79). Consistent with this possibility is our 

finding of an increase in the frequency of spontaneous EPSPs after the 

application of 8-Br cyclic AMP. However, the increase in the synaptic 

strength could also be due to a postsynaptic effect since we have shown 

that cyclic AMP-active agents modify the postsynaptic responses of a 

proportion of dorsal horn neurons to selective agonists of EAA receptors, 

including NMDA. However, use of intracellular voltage recordings from a 

relatively intact slice preparation and the fact that the membrane 

potential is the final common output of a number of pre- and postsynaptic 

processes makes it difficult task to assign conclusively a locus or 

mechanism to the effects produced by bath application of cAMP analogues. 

In addition, there is a problem relating the changes in EAA responses 

to changes in responses to afferent stimulation. As is the case in the 

hippocampus, there may be extrajunctional EAA receptors on spinal neurons 

and these may be regulated differently from the receptors that participate 

in normal synaptic transmission. Thus, while activation of PKA may indeed 

enhance neuronal sensitivity to exogenous NMDA, additional or different 

mechanisms may account for the increase observed in the monosynaptic EPSP. 

In order to resolve this issue, it will be necessary in a future work to 

isolate the NMDA component of the excitatory postsynaptic current. 
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Physiological consequences of cyclic AMP actions for the slow excitatory 

synaptic transmission 

We have recently demonstrated that the slow excitatory synaptic 

response (slow EPSP) evoked in the rat spinal dorsal horn neurons by 

repetitive stimulation of primary afferent fibers has two depolarizing 

components: an initial transient component that appears to require the 

activation of NMDA and AMPA/KA receptors (29,30) and a late, longer-

lasting, possibly peptidergic component (70,71). Although the molecular 

mechanism of the slow EPSP in the rat dorsal horn is presently not 

completely understood, at least two ionic mechanisms are thought to be 

involved in the generation of the slow EPSP: a conductance decrease of a 

voltage-dependent K"*" current (11,88) and a conductance increase possibly to 

Na"*" and/or Ca^^ ions (11) . In addition, the increase in Ca^^ influx and/or 

the change in intracellular free Ca^"*" concentration are important during 

the late phase of the slow depolarizing response (11). The slow membrane 

depolarization, the long-lasting enhancement in excitability and the high 

temperature sensitivity of the slow EPSP (30) suggest that synthesis of a 

second messenger might be involved in a signal transduction during the slow 

EPSP. Consistent with this possibility are the findings that glutamate 

receptors can regulate the production of cyclic nucleotides in central 

neurons (27) and that NMDA receptor activation increases cyclic AMP levels 

and voltage-gated Ca^"*" channel activity in area CAl of hippocampus (17). 

Although second messenger function of cyclic AMP in vertebrate neurons 

has long been suggested (33) the observed electrophysiological correlates 
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were predominantly inhibitory in nature (24,48,68). However, Palmer et al. 

(66,67), working in guinea pig myenteric neurons, provided evidence that 

cyclic AMP may function as a mediator of a slow excitatory synaptic 

transmission and transduction of some of peptidergic signals. Moreover, 

the experimental procedures that increase intracellular cAMP level simulate 

and potentiate the electrically evoked slow EPSP in both myenteric and 

dorsal horn neurons (43,62,66,67,92). In this context it is perhaps 

relevant that the mRNA for SP receptor, the receptor which appears to be 

functionally involved in the slow excitatory synaptic transmission in the 

rat spinal dorsal horn (29,70,71,82), is significantly increased by the 

agents that increase intracellular cyclic AMP levels. 

In conclusion, our results suggest that in the rat spinal dorsal horn 

the activation of the adenylate cyclase-cyclic AMP-dependent protein kinase 

system may be involved in the regulation of the sensitivity of postsynaptic 

excitatory amino acid receptors and primary afferent neurotransmission, 

including nociception. Recent evidence has suggested that cyclic AMP plays 

a role as a second messenger system in the decrease of nociceptive 

threshold (or hyperalgesia) produced by the agents acting on primary 

afferent terminals (80,81). 
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PROTEIN KINASE 
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SUMMARY 

Glutamate-gated ion channels mediate excitatory synaptic transmission 

in the central nervous system and are involved in synaptic plasticity, 

neuronal development and excitotoxicity (5,24). These ionotropic glutamate 

receptors were classified according to their preferred agonists as AMPA (a-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), KA (kainate), and NMDA 

(N-methyl-D-aspartate) receptors (27). The present study of NMDA receptor 

channels expressed in acutely isolated spinal dorsal horn (DH) neurons of 

young rat reveals that these channels are subject to modulation through the 

adenylate cyclase cascade. Whole-cell voltage-clamp recording mode was 

used to examine the effect of adenosine 3',5'-monophosphate (cyclic AMP)-

dependent protein kinase (PKA) on the responses of DH neurons to NMDA. 

Whole-cell current response to NMDA was enhanced by 8 Br-cyclic AMP, a 

membrane permeant analog of cyclic AMP or by intracellular application of 

cyclic AMP or catalytic subunit of PKA. Our results indicate that NMDA 

receptors are modulated by PKA and that this modulation is potentially 

important mechanism to control excitability of spinal DH neurons and the 

efficacy of synaptic transmission. 
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INTRODUCTION 

There is evidence that second messenger systems can regulate neuronal 

excitability by phosphorylation of voltage-gated (10,11) and ligand-gated 

channels (13,16). Protein phosphorylation of glutamate receptors by 

protein kinase C (PKC) and cyclic AMP-dependent protein kinase (PKA) has 

been suggested to regulate their function (1,4,5,6,7,12,25) and be involved 

in some forms of synaptic plasticity such as long-term potentiation and 

long-term depression (24). 

Whereas glutamate receptors gated by kainate in white perch retinal 

horizontal cells, mammalian hippocampal neurons, and GluR6 glutamate 

receptor transiently expressed in mammalian cells can be regulated by 

cyclic AMP-dependent protein phosphorylation (3,7,14,22,26), possible 

modulation of NMDA receptors remains less understood 

(1,4,7,17,20,26). Although the modulation of the NMDA responses of rat DH 

neurons by both protein kinase C (4,6) and protein kinase A ( 1,6) has been 

suggested, whole cell (26) and single-channel analysis (7) revealed no 

obvious alterations of the NMDA channel properties in cultured hippocampal 

neurons. However, the findings that the spinal dorsal horn contains high 

density of binding sites for forskolin (28) and that cyclic AMP potentiates 

the fast excitatory synaptic potentials at primary afferent synapses with 

substantia gelatinosa neurons and also enhances the responses of both non-

NMDA and NMDA receptors of DH neurons in the spinal slice preparation (1,2) 

suggest that cyclic AMP-dependent second messenger system may have a 

functional role by modulating signal transduction at both subclasses of 
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glutamate receptor. Here we report that currents induced by activation of 

the NMDA receptor were potentiated by 8-Br cyclic AMP, the membrane 

permeable analogue of cyclic AMP, and by intracellular application of the 

catalytic subunit of PKA or cyclic AMP. Part of these results has been 

presented elsewhere (2,20). 
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Single spinal DH neurons in the Rexed's laminae I-IV were isolated 

acutely from 9- to 16-day-old Sprague-Dawley rats by the method previously 

described (19). The isolated cells remain in a good condition for < 8 h, 

exhibiting a variety of voltage-dependent ionic currents and having good 

responses to EAAs and peptides (19). The whole-cell voltage clamp 

technique (8) was used to record membrane currents of DH neurons at room 

temperature (20-23°C). Currents elicited by EAA and holding voltages were 

monitored continuously with a List L/M-EPC7 patch-clamp amplifier and 

recorded on a Gould-Brush pen recorder. In addition, currents were 

filtered at 2kHz, sampled at 2 kHz, stored on computer, and both acquired 

and analyzed using PCLAMP software (Axon Instruments). The solution 

perfusing the outside of the cell had the following composition (mM); NaCl 

150, KCl 5, CaCl2 0.5, MgCl2 zero, HEPES 10, D-glucose 10, NaOH to adjust 

pH to 7.4, bovine serum albumin 0.1 mg/ml, and tetrodotoxin (5xlO"^M). In 

a majority of experiments, nominally glycine-free solutions, which are 

likely to contain < 20nM glycine (the deionized water used to prepare 

recording and testing solutions contains a background glycine concentration 

of about 20 nM, as determined by high performance liquid chromatography), 

were used. However, in some of the experiments, the extracellular solution 

contained 10-100 nM glycine to increase the NMDA response (9). Electrodes 

were filled with one of two internal solutions containing (in mM): CsCl 140 

(or 120 K-aspartate and 20 KCl), NaCl 10, MgClg 1, CaClg 0, HEPES 10, EGTA 

1 and TRIS base for pH 7.2. To reduce wash-out of NMDA responses 3 MgATP, 
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0.1 GTP and 0.1 leupeptine or 6niM MgATP were added to internal solution. 

Membrane potential was clamped at -60 mV, where no holding current (leak 

current) was usually observed. NMDA (10"'^M; sodium salt, Tocris, Research 

Biochemicals Incorporated, RBI), 8-bromoadenosine 3'5'monophosphate (10'®-

lO'^'M, 8-Br cyclic AMP sodium salt, Sigma), 3-isobutyl-l-methyl-xanthine 

(5xl0"^M, IBMX, Sigma), and tetrodotoxin (5xlO"^M, TTX, Sigma) were 

dissolved in the HEPES-buffered solution and applied to the recorded cells 

by a fast pressure system (19). NMDA was applied at low frequency (minimum 

rate of once every 2.5 min) to minimize desensitization. MgATP (6mM, 

Sigma), cyclic AMP (40-200pM, Sigma) and cPKA (20/ig/ml, obtained as a 

generous gift from Dr. A.C. Nairn, Rockefeller University, or purchased 

from PROMEGA) were freshly prepared before each experiment and applied 

intracellularly using double-filled micropipettes, where the tip of the 

pipette was filled first with internal solution and shank with the internal 

solution containing MgATP or MgATP + cPKA or MgATP + heat inactivated cPKA 

(we boiled an aliquot of cPKA for 15 min to denature the enzyme) or cyclic 

AMP alone, cyclic AMP was also internally applied through a plastic tube 

inserted in the patch pipette (4). 

To compare responses between different cells the peak amplitude of 

EAA-induced inward current at any given time was normalized with respect to 

the value of first response. Population results are expressed as means ± 

S.E.M, For statistical analysis we used one way ANOVA and statistical 

significance between means was determined by Student-Newman-Keuls Test. 
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RESULTS 

In order to examine a possible role of PKA in the regulation of NMDA 

receptors, we first examined the effects of MgATP and cyclic AMP on the 

wash-out of NMDA currents. As shown in the previous work (23), and here in 

Fig. 1 (control curve) the peak amplitude of NMDA currents progressively 

declined to approximately 50% of their initial amplitude within 15 min of 

dialysis with an intracellular solution containing CsCl and ImM EGTA as 

calcium buffer. The inclusion of 6mM MgATP (Fig. 1A,B) (or in several 

cells of 3mM MgATP, O.lmM GTP and 0.ImM leupeptine, a Ca^*-activated 

neutral protease inhibitor, data not illustrated) in the intracellular 

medium significantly reduced the time-dependent wash-out of NMDA currents. 

Moreover, dialysis with a solution containing cyclic AMP (40-80 fM) appears 

to sustain NMDA currents for 15 min, or more (Fig. 1A,B). These results 

suggest that phosphorylation, possibly through the cyclic AMP-dependent 

protein kinase system is required for maintenance of NMDA receptor in the 

functional state. 

In order to determine whether endogenous PKA can modulate NMDA 

currents, we externally perfused DH neurons with 8-Br cyclic AMP, a 

membrane permeable analog of cyclic AMP, and also used intracellular 

perfusion with cyclic AMP. When single DH neurons were exposed to 8-Br 

cyclic AMP (10-100/iM) for 5 min before the testing of NMDA responses, an 

increase (to 121.8 ± 3.0% of control, n=14, mean ± SEM) in the peak 

amplitude of the transient component of NMDA-induced current was observed 

(Fig. 2A,C). On average, the maximum effect occurred 10 min after the 
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Fig, 1, Stability of peak NMDA currents in acutely isolated spinal 
dorsal horn neurons in the presence of three different 
intracellular dialysis solutions. NMDA (lOOpM, 8s) was 
applied at regular 2,5 min intervals to neurons held 
at -60mV (in this and subsequent figures) in a whole-cell 
voltage-clamp configuration. A; Pairs of typical NMDA-
induced current responses obtained at 2.5 min (left trace) 
and at 20 min (right trace) after the rupture of the patch 
for three different neurons. The peak amplitude of the NMDA 
current responses characteristically decreased to 50% of the 
initial amplitude after the 20 min of dyalisis with CsCl-
containing solution (CONTROL). When Mg'^'ATP (6mM) was added 
to the control solution, the rundown was significantly 
reduced (Mg'^^ATP) , and almost completely abolished when cAMP 
(40-80/iM) was added to the control solution (cAMP, inset). 
B; Time course (20 min) of the NMDA-induced current 
responses for the three different intracellular dialysis 
solutions. Data are presented as means+SEM. Statistical 
significance (P<0.05) of data is marked by an asterisks. A; 
11-day-old rat (left traces), 11-day-old rat (middle 
traces), 9-day-old rat (right traces, inset). B; 8 to 15-
day- old rats. 
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Fig. 2. The effects of 8-Br cAMP and intracellular dialysis with 
cAMP on NMDA-induced currents recorded from dorsal horn 
neurons. A; NMDA current responses recorded from a dorsal 
horn neuron (D; upper inset) before, during and after the 
pressure aplication of 8-Br cAMP (lOpM, 6min). The NMDA 
response was recorded with a nystatin (550pM/ml) perforated 
patch technique, and 20 min were allowed, after formation of 
a seal, for the NMDA responses to stabilize before the start 
of experiment. B; NMDA currents in a different dorsal horn 
neuron (D; lower inset) in the presence of regeneration 
system (Mg''^ATP (3mM), GTP (0.3mM) and leupeptin (O.lmM)) in 
the patch electrode. Time course of the peak NMDA-induced 
currents before, during and after intracellular perfussion 
with the control solution or cAMP (80pM)-containing control 
solution. The individual NMDA responses are illustrated 
above the plot. C; Summarized results showing the 
enhancement of NMDA-induced currents produced by 8-Br cAMP 
(10-100/iM), 8-Br cAMP (lOG/xM) + IBMX (0.5mM) or by 
inracellularly pressure-applied cAMP (80-200pM). A; 12-day-
old rat, B; 13-day-old rat. C; 8-15-day-old rats. 
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onset of pressure application of 8-Br cyclic AMP. The potentiation was 

frequently preceded by a depression (by 66.4 ± 5.5%, n=7) of the NMDA 

response (Fig. 2A). This depressant effect was absent in the presence of 

lO-lOOnM added glycine to the recording medium. The potentiating effect of 

8-Br cyclic AMP on the NMDA-induced currents was enhanced (to 137.1 ± 

11.3%, n="9) when the perfusing medium contained the inhibitor of 

phosphodiesterase IBMX (0.5 mM; Fig. 2C). Similar potentiation (171.8 ± 

41.3%, n=3) was obtained when DH neurons were intracellularly perfused with 

cyclic AMP (40-200/iM) for 6-10 min (Fig. 2B-C). In a cell, illustrated in 

Fig. 2B, the enhancing effect of cyclic AMP took 2-3 rain to appear, 6 rain 

to reach a maximum and declined in 10 min during the perfusion with cyclic 

AMP. The enhancing effect was absent when the cells (n=5) were exposed 

only to the superfusate without cyclic AMP (Fig. 2B, control), the finding 

ruling out the possibility that any dislocation of a cell resulting from 

intracellular perfusion, may have contributed to the effect. 

Since the effect of 8-Br cyclic AMP and cyclic AMP is most likely 

mediated by activation of protein kinase A we directly tested for this 

possibility by intracellularly applying catalytic subunit of PKA (cPKA). 

When internal surface of a cell was exposed to 20/ig/ml of cPKA in the 

presence of 6mM MgATP, the NMDA current increased (n=14) after penetrating 

the cell reaching a value of 131.3 ± 17.0% of the control (1st NMDA 

response) after 5 min and then declined slowly to a value of 98.8 ± 11.8% 

of control after 18 rain (Fig. 3A-C). Inclusion of MgATP alone (Fig.l, 

n=22) or 20/iM of heat-denaturated cPKA (d-cPKA) with 6raM MgATP (Fig. 3, 

n=>8) or cPKA without MgATP (Fig. 3, n-=6) yielded wash-out statistically not 
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Fig. 3. The effect of cPKA on NMDA-induced currents. Typical examples of NMDA 
currents recorded from dorsal horn neurons at -60mV with three 
different types of internal solutions. A; The left traces correspond 
to the responses obtained at 2.5 min after, and the right traces 10 
min after the rupture of the patch. One of the following substances 
was added to the standard intracellular dialysis solution: 
cPKA(20/ig/ml)+ Mg^ATP(6mM)(A; upper traces), cPKA(20pg/ml)(A; middle 
traces) or heat-denaturated cPKA(20/ig/ml)+ Mg^ATP(6mM) (A; bottom 
traces). B; Time course of the mean peak amplitude of NMDA currents 
for three different intracellular dialysis solutions expressed as 
percentage of the first(control) response. C; The same data expressed 
as percentage of d-cPKA response. Statistical difference to d-cPKA: * 
P<0.05, ** P<0.01. A; 9-day-old rat (upper trace), 9-day-old rat 
(middle trace) and 11-day-old rat (bottom trace). B,C; 8 to 15-day-old 
rats. 
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different from one obtained under control conditions (Fig. 1). The 

amplitude of the NMDA currents recorded with electrodes containing cPKA + 

MgATP, and measured 18 min after penetrating the cell, was significantly 

higher than the currents recorded under control conditions (Fig. 1) or when 

dPKA + Mg^^ATP or cPKA alone were used (Fig. 3) . 
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DISCUSSION 

Our results indicate that NMDA currents of isolated rat spinal DH 

neurons are modulated by the activity of PKA. Our findings that NMDA-

evoked current was potentiated by treatment of these neurons with forskolin 

(23) or 8-Br cyclic AMP, as well as on the direct perfusion of the cells 

with cyclic AMP or PKA is consistent with the results obtained in DH 

neurons using the in vitro spinal slice preparation (1,6), and the 

observations recently made in Xenopus oocytes injected with rat brain RNA 

(17). However, our present finding of the enhancement of macroscopic NMDA 

currents by PKA differs from the results obtained in the hippocampus, where 

whole-cell and single channel analysis in cultured rat hippocampal neurons 

revealed no obvious alterations of the NMDA channel properties (7,26). 

This difference in the results may arise from different experimental 

protocols used or from differential expression of NMDA receptor subtypes in 

the two preparations studied. The mechanism underlying the potentiation of 

NMDA peak current by PKA remains to be determined. Several possibilities 

could be considered. Thus NMDA receptor-channel complexes might be 

directly phosphorylated by PKA, or alternatively regulation of the receptor 

channels could be indirect by means of regulatory proteins associated with 

channels. The latter possibility appears to be more likely, since the 

various subunits of the cloned rat NMDA receptor contain consensus 

phosphorylation sites for Ca^^-calmodulin-dependent protein kinase type II 

and protein kinase C (12,18), and no consensus sequence for PKA. However, 

in view of the multiplicity of NMDA receptor subtypes, further study is 
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needed to determine whether NMDA receptor is directly phosphorylated by 

known protein kinases. The effect of PKA on NMDA currents of DH neurons 

could result also from a recruitment of additional receptors (11,15) or by 

the activation of a different subtype of a receptor. 

It is well known that the properties of the nicotinic acetylcholine 

receptor (nAChR) can be regulated by a variety of pharmacological agents 

and physiological ligands binding to sites distinct from the 

neurotransmitter binding sites, referred to as allosteric sites (13). 

Although the physiological significance of this modulation is not fully 

elucidated, its potential role in the modulation of synaptic efficacy is 

suggested. The study of nAChR of ciliary ganglion neurons revealed the 

presence of a large pool of silent receptors that may be converted into 

active state through a cyclic-AMP-dependent process (11,15). 

Alternatively, intracellular nAChRs may become exposed to the surface of 

the cell in the presence of cyclic AMP (16). Similar to nAchR, NMDA-gated 

ion channel is also a transmembrane protein carrying multiple binding 

sites, that may link through the membrane, multiple convergent signals from 

the outside, or the inside of the membrane, and serve as building 

components for the "chemical Hebb synapse". 

The results obtained in the present work describe the effects of the 

cyclic AMP second-messenger system on extrajunctional NMDA receptors, 

rather than those localized in the postsynaptic membrane. To determine if 

junctional NMDA receptors might also be modulated through the cyclic AMP 

cascade, it will be necessary in a future work to isolate the NMDA 

component of the excitatory postsynaptic current and determine whether the 
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activation of cyclic AMP second messenger system affects the properties 

(amplitude, decay time) of these currents. 

Even though NMDA receptors play a minor role in mediation of the 

dorsal root-evoked monosynaptic EPSP of DH neurons, NMDA receptors are 

involved when the pathway was activated at high frequency (6), and are also 

critically involved in neuronal plasticity such as long-term potentiation 

(21). Our study suggest that in the rat spinal DH cPKA may be involved in 

the regulation of the NMDA receptor sensitivity and may contribute to some 

aspects of postsynaptic plasticity that may play a role in integration of 

sensory information, including pain. Recent study (25) has suggested that 

cPKA plays a role as a secondary messenger system in the process of 

hyperalgesia at the primary afferent synapse. 
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PAPER III. MODULATION OF AMPA AND NMDA RESPONSES IN RAT SPINAL 

DORSAL HORN NEURONS BY 

TRANS-l-AMINOCYCLOPENTANE-1•3-DICARBOXYLIC ACID 

^Published as a research paper by R. Cerne and M. Randic. 1992. Neurosci. 

Lett. 
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SUMMARY 

In freshly isolated spinal dorsal horn (DH) neurons (laminae I-IV) of 

the young rat, the effects of 25-100/iM of (±)-trans-1-aminocyclopentane-

1,3-dicarboxylic acid (trans-ACPD). 1S,3R-ACPD and 1R,3S-ACPD, a 

metabotropic glutamate receptor (mGluR) agonists, on inward currents 

induced by glutamate (Glu), a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA), N-methyl-D-aspartate (NMDA) and kainate were studied under 

whole-cell voltage-clamp conditions. When the cells were clamped to -60mV, 

the racemic mixture and both stereo isomers of trans-ACPD increase the 

responses elicited by Glu, AMPA, and NMDA, but little those of kainate. In 

addition, quisqualate (10-50 /iM), in the presence of CNQX (5-20 /iM) or NBQX 

(5 pM), potentiated NMDA-induced currents. The enhancing effect lasted 10-

75 min, depending upon both dose and length of application. In a smaller 

proportion of dorsal horn neurons, the enhancing effect was preceded by a 

transient depression of the responses to Glu, AMPA, and NMDA. 2-Amino-3-

phosphono-propionic acid (L-AP3), a putative antagonist of mGluR exerted 

little effect on responses to AMPA itself, but reduced or prevented the 

enhancing effect of 1S,3R-ACPD. It is concluded that activation of a 

metabotropic glutamate receptor by trans-ACPD. and its two enantiomers, may 

mediate the enhancement of AMPA and NMDA responses in acutely isolated rat 

spinal dorsal horn neurons. These results are consistent with the 

possibility that the activation of metabotropic glutamate receptor may 

contribute to the regulation of the strength of excitatory amino acid-

mediated primary afferent neurotransmission, including nociception. 
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INTRODUCTION 

There are two major classes of receptors for excitatory amino acids 

(EAA) in the vertebrate CNS that have been termed "ionotropic" and 

"metabotropic" [19,20]. The ionotropic (AMPA, kainate and NMDA) receptors 

directly regulate the opening of ion channels to Na"*", and Ca^"*". The 

metabotropic glutamate receptors (mGluRs) are coupled through a G 

protein(s) to phosphoinositide-specific phospholipase C and probably 

present both pre- and postsynaptically [6,17]. The complementary DNA of a 

mCluR has been recently cloned and characterized [12]. Metabotropic 

glutamate receptor is activated by the rigid glutamate analog, (±)-trans-1-

aminocyclopentane-1,3-dicarboxyllc acid (trans-ACPD) [15]; a claimed 

selective agonist for this receptor being 1S,3R enantiomer of ACPD [9], 

whereas quisqualate is nonselective but potent agonist at this receptor. 

There is evidence that activation of the mGluR has a role in the generation 

of long-term potentiation and long-term depression [2,13]. Although AMPA 

receptor plays a key role in mediating expression of both forms of 

plasticity, trans-ACPD has recently been shown to potentiate NMDA but not 

AMPA responses in hippocampal neurons [1,8]. We now report that (±)-trans-

ACPD, and both stereo isomers of trans-ACPD. increase AMPA and NMDA 

responses in freshly isolated rat spinal dorsal horn (DH) neurons. 
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METHODS 

Single spinal DH neurons in the Rexed's laminae I-IV were isolated acutely 

from seven to fourteen day-old Sprague-Dawley rats by the method described 

elsewhere [14]. The whole-cell voltage clamp technique [7] was used to 

record membrane currents of isolated DH neurons at room temperature (20-

23°C). Currents elicited by EAA and holding voltages were monitored 

continuously with a List L/M-EPC7 patch-clamp amplifier and recorded on a 

Gould-Brush pen recorder. The solution perfusing the outside of the cell 

had the following composition (mM): NaCl 150, KCl 5, CaCl2 0.5 or 2, MgCl2 

zero or 1, HEPES 10, D-glucose 10, NaOH to adjust pH to 7.4, bovine serum 

albumin 0.1 mg/ml, and tetrodotoxin (5 x lO'^M). Electrodes were filled 

with one of 2 internal solutions (in mM): K-aspartate 120, KCl 20, NaCl 

10, MgCla 1. HEPES 10, BAPTA or EGTA 1, NaATP or MgATP 3, GTP 0.1-0.3, 

leupeptin 0.1 and TRIS base for pH 7.2. In more than half of experiments 

we replaced K-aspartate (120 mM) and KCl (20 mM) with CsCl (140 mM). EAA-

glutamate (GLU), a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA), kainate, N-methyl-D-aspartate (NMDA), 1S,3R-ACPD, 1R,3S-ACPD and a 

racemic mixture (1S,3R and 1R,3S) of ACPD were dissolved in the HEPES-

buffered solution and applied by a pressure system [14]. Only one cell in 

a dish was subject to one trial with (±)-trans-ACPD, or its enantiomers, 

the exception being the experiments using 2-amino-3-phosphonopropionate 

(AP3) where each cell was subjected to two trials with ACPD. EAAs, various 

forms of trans-ACPD and L-AP3 were obtained from Cambridge Research 

Biochemicals and Tocris. To compare responses between different cells the 
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peak and steady-state amplitude of EAA-induced inward current at any given 

time was normalized with respect to the average values of first three 

responses recorded prior to trans-ACPD administration. Population results 

are expressed as means ± S.E.M. For statistical analysis we used one way 

ANOVA and statistical significance between means was determined by Student-

Newman-Keuls test. 
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RESULTS 

To investigate direct postsynaptic interactions between ionotropic and 

mGluRs we perfused DH neurons with 25-100/jM of (±)-trans-ACPD or 1S,3R-ACPD 

or 1R,3S-ACPD, for either 40-60s or 6 min, and continuously applied EAAs at 

2.5 min intervals before, during and after drug addition, for 60 min or 

more. In most of the experiments 0.5 /iM TTX was present in the perfusing 

solution. When DH neurons were voltage clamped to -60mV, pressure 

application of GLU (10-30/iM), AMPA (10-20pM) or NMDA (30-100/iM) for 8-lOs 

induced inward currents that showed fast desensitization (Figs. 1-4) in 

most of DH neurons [14]. At a holding potential of -60mV, the AMPA 

responses were relatively constant (Fig. 2A,B) showing an average 10% 

decrease in the peak amplitude within 60 min of recording. Somewhat 

greater reduction in the peak amplitude of the NMDA responses occurred 

during the first 25 min of recording. Thereafter, the NMDA responses 

stabilized at approximately 75% of the initial amplitude when CsCl-

intracellular dialysis solution was used [16]. 

1S,3R-ACPD (25-100/iM) induced a small (range: 1-7 pA) slowly developing 

and reversible steady inward current that was accompanied by an increase in 

membrane current noise in 11 of 17 examined cells. As shown in Fig. lA-B, 

application of lOO/xM of 1S,3R-ACPD for 40s caused a reversible increase of 

the Glu-elicited inward current; the peak amplitude of the fast component 

increased to 167.3 ± 28.8% of control (n=3). With longer (6 min) pre-

treatment of a DH neuron with 1S,3R-ACPD, the enhancing effect lasted > 40 

min (Fig. ID). The enhancing effect was absent when the cell was exposed 
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Fig. 1. Two different DH neurons were clamped to -60 mV and initial 
transient and steady-state components of inward current 
measured at the peak and the end of current excursion generated 
by 10s applications of 25 GLU (A,B) and 30 fM. GLU (C,D). 
Bars denote periods of a rapid application of GLU. A-B: 1S,3R-
ACPD, 100 /jM, 40s; C-D: 1S,3R-ACPD, 100 /iM, 6 min. Time 
courses of the peak and steady-state GLU current responses 
recorded before, during and after 1S,3R-ACPD administration are 
shown in the graphs (B,D). In this, and Figs. 2-4, the 
intracellular solution contained in mM: 140 CsCl, 10 NaCl, 1 
MgClg, 10 HEPES, 1 EGTA, pH 7.2. Tetrodotoxin (TTX 0.5/iM) was 
added to the recording solution. The results are expressed as 
the mean percentage of the three responses evoked by GLU before 
applying 1S,3R-ACPD. A, B: 12-days-old-rat; C, D: 13 days-old-
rat. 
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only to the superfusate without 1S,3R-ACPD, the finding ruling out the 

possibility that any dislocation of a cell resulting from flow, may have 

contributed to the effect. Since Glu activates AMPA, kainate and NMDA 

receptors in the rat spinal DH neurons [14], we used these selective 

agonists of Glu receptors in order to determine which receptor subtype 

IS,3R-ACPD interacted with. 

1S,3R-ACPD (100 fiH) caused an increase (40-60s perfusion: to 132.3 ± 

10.8%, n=ll; 6 min perfusion: to 147.5 ± 11.3%, n=13) in the initial peak 

amplitude of the transient component of AMPA-induced current in all 

examined cells (Fig. 2C,F) and also potentiated the steady-state component 

(40-60s: to 117.3 ± 5.7%; 6 min: to 122.8 ± 5.2%) of the AMPA response 

(Fig. 2C). The enhancement of AMPA response was in 7 of 27 cells pulsatile 

in nature. The AMPA-induced currents were increased by 1S,3R-ACPD not only 

during co-administration but up to 65 min after removal of the drug (Fig. 

2D,E) and the effect showed (18 of 24 cells) in part recovery (40s 

perfusion: to 104.1 ± 2.5%; 6 min: to 117.8 ± 7.6%). However in 10 of 24 

cells the potentiation (to 120.8 ± 10.0%) of the AMPA-induced current by 

1S,3R-ACPD was preceded by a transient depression (to 86.1 ± 2.7%), as 

shown in Figs. 2E and 3. The potentiation of the initial transient 

component (to 125.7 ± 6.6%, n=4) and the steady-state component (to 120.7 ± 

6.9%, n-4) of the AMPA- indue e d current is produced also by 1R,3S-ACPD (50-

100/iM) enantiomer of trans-ACPD. The AMPA (lO'^M) response was Initially 

decreased (to 80.5% control) and later increased (to 126.0 ± 13.1%) during 

CO-administration with (±)- trans-ACPD (lO'^'M) in 3 cells. Pre-incubation 

of DH neurons with 2-amino-3-phosponopropionic acid (L-AP3) (10'^ M for 3-9 
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Fig. 2. A, the traces show inward current responses in a DH neuron 
evoked by AMPA (10 /tM, 10s), recorded at 2.5 min intervals for 
100 min, at Vj, -60mV. B, shows the time course of the peak and 
steady state component of AMPA responses; the numbers (1-6) 
designate the individual responses illustrated in A. C,D, 
1S,3R-ACPD (0.1 mM, 6 min), in the came cell potentiated the 
transient and steady-state component of AMPA (25 /tM)-induced 
current and the effect showed a partial recovery. E, L-AP3 
(10"®M) prevented the enhancing effect of 1S,3R-ACPD. F, 
summarized results showing the enhancement of AMPA responses 
(transient component) by 1S,3R-ACPD applied for 40s or 6 min 
and the antagonism of the effect by L-AP3. The results are 
presented as mean ± SEM, statistical significance of data is 
marked by an asterisk. A-D, 11-day-old-rat; E, 10-day-old-rat; 
F, 7-16-days-old rats. 
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Fig. 3. 1S,3R-ACPD (100 /iM, 6 min) initially abolished the transient 
component of the AMPA (20 /iM, 10s)-induced current. The 
depressant effect was present during the co-administration of 
the drugs and was followed by a small potentiation of AMPA 
responses. 
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min), a putative antagonist of mGluR, exerted little effect on responses to 

AMPA itself, but prevented (n=4) the enhancing effect of 1S,3R-ACPD (Fig. 

2E). Kainate (10-25pM) current is little (decrease to 90%, n=3; increase 

to 120%, n=l) affected by 1S,3R-ACPD (100/iM for 6 min) in 5 cells. 

Next, we have examined the effects of a racemic form of trans-ACPD and 

IS,3R-ACPD on the NMDA-induced current responses of DH neurons. When the 

microelectrode solution contained high K"*" with ImM-EGTA or BAPTA (no added 

Ca^"*") , and Mg^^ was omitted from a nominally glycine-free perfusing solution 

containing 0.5/iM TTX, pressure application of (±)- trans-ACPD (10-100/iM for 

2-4 min) enhanced (Fig. 4B) the peak amplitude of the Initial transient 

component of the NMDA-induced current (to 146.1 ± 7.8%) in 11 of 12 tested 

cells. The enhancing effect of (±)-trans-ACPD was also present under 

condition of superfusion with glycine (50 nM)-enriched solution. The 

maximum increase was generally observed about 10 min following the onset of 

(±)-trans-ACPD application. In 4 of the cells (±)-trans-ACPD produced two 

distinct effects on the transient component of NMDA-induced current 

consisting of an initial depression (to 76.5 ± 8.3% of control) followed by 

a potentiation (to 124.3 ± 4.5%). The dual effect (decrease: to 70.0 ± 

5.8; increase: to 166.3 ± 19.5%) was also observed in each of the 4 cells 

exposed to 1S,3R-ACPD (100 /iM for 6 min) and when K-aspartate and KCl in 

the microelectrode solution were replaced by CsCl (Fig. 4A). The maximum 

potentiation was observed within 25-30 min following the onset of 1S,3R-

ACPD application. Similar as for the AMPA responses, the NMDA-induced 

currents were modified by trans-ACPD and 1S,3R-ACPD not only during co­

administration but up to 75 min after removal of the drugs.A specific 
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Fig. 4. A, The graph shows the time course of the peak transient 
component of NMDA (100 pM, 10s) current responses recorded at 
2.5 min intervals before, during and after 1S,3R-ACPD (100 /iM, 
6 min) application. Individual responses are illustrated above 
the graph. B, summarized results showing the enhancement of 
the transient component of NMDA-induced current produced by 
(±)-trans-ACPD, 1S,3R-ACPD and QA co-administered with CNQX. 
A, 10-day-old-rat; B, 7-15-day-old-rats. 
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activation of mGluR can be obtained using quisqualate (QA) in the presence 

of CNQX or NBXQ, the ionotropic receptors antagonists. As shown in Fig. 

4B, QA (10-50 for 1 min) in the presence of CNQX (5-20 /iM) or NBQX (5 

/«M) caused a reversible increase (to 130.3 ± 17.3%) in the peak NMDA 

response in all cells examined (n-7). 



www.manaraa.com

119 

DISCUSSION 

In the present investigation we have demonstrated that (±)- trans-ACPD 

and its enantiomers (1S,3R-ACPD and 1R,3S-ACPD) enhance both the AMPA- and 

NMDA-induced responses of a subpopulation of freshly isolated spinal DH 

neurons from young rats. Our finding that (±)-trans-ACPD and 1S,3R-ACPD 

generate a slow inward current and increase the NMDA responses in DH 

neurons is in agreement with recent reports [1,8] which showed that 1S,3R-

ACPD enhances responses of CAl pyramidal neurons to NMDA in the hippocampal 

slice preparation. However, our observation that 1S,3R-ACPD also enhances 

the AMPA responses of isolated DH neurons contrasts with the results of the 

previous studies [1,8] which demonstrated that the drug selectively 

potentiates responses to NMDA, but not AMPA. Although reasons for this 

difference in the results are presently unknown, they could be due to 

differences in the cell type and age of the animals used. 

In addition, the present findings show that 1S,3R-ACPD produces dual 

effects, an initial brief depression followed by a prolonged potentiation 

of the AMPA-and NMDA-induced current responses of a proportion of DH 

neurons. The ACPD-induced depression of the inward currents could occur as 

a consequence of antagonism of AMPA or NMDA receptors, activation of a 

postsynaptic receptor which modifies membrane resistance, or activation of 

a presynaptic receptor if the cells are incompletely isolated from 

presynaptic elements. Given the pharmacological profile of 1S,3R-ACPD, 

antagonism of postsynaptic EAA receptors is unlikely [15,17]. Since the 

activation of the metabotropic receptor is capable of reducing K"*" currents 
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[5], the resulting increase in neuronal resistance may contribute to the 

ACPD-induced depressions of the EAA responses. 

The exact molecular mechanism(s) underlying the modulation of AMPA- and 

NMDA-receptors-activated conductances by (±)-trans-ACPD and 1S,3R-ACPD have 

yet to be elucidated. Although 1S,3R-ACPD has been proposed as a selective 

agonist for mGluR, this is still a question of debate. However, our 

findings that QA in the presence of CNQX or NBQX also enhances NMDA 

responses of DH neurons and that L-AP3 prevented the enhancing effect of 

1S,3R-ACPD on AMPA responses support this possibility. The major effects 

associated with mGluR(s) activation has been stimulation of IP3 synthesis 

[17] and mobilization of Ca^* from intracellular stores in neurons 

[6,9,17]. Changes in [Ca^^]i can lead to activation of Ca^"*"-dependent 

protein kinases or phosphatases resulting in changes in the concentrations 

of several second messengers and protein phosphorylation. 

Electrophysiological studies have demonstrated that metabotropic receptor 

may play an important role in regulation of neuronal excitability and 

synaptic transmission in the brain. Generation of a slow depolarization 

[5,18] or an inward current [5,8], activation of a hyperpolarizing response 

[8], depression of excitatory [3,11] and inhibitory postsynaptic currents 

have been reported. In addition, trans-ACPD enhances tetanus-induced 

short- and long-term potentiation (LTP) in the hippocampus [2,13]. 

Although a great deal is known about LTP in hippocampus the existence of a 

similar synaptic plasticity at primary afferent synapses in the rat 

superficial spinal DH has been only recently demonstrated [10]. This 

effect in the spinal DH may be at least in part due to ACPD potentiating 



www.manaraa.com

121 

the responses of DH neurons to AMPA and NMDA. However, until specific 

antagonists for ACPD receptors are developed, we can only speculate about 

the possible roles of ACPD receptors in synaptic transmission and 

plasticity in the rat spinal DH. 
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GENERAL DISCUSSION 

The major points pertaining to the results presented in this thesis have 

already been discussed in the "Results". This chapter will outline the 

major conclusions derived from the presented data and offer some 

speculative ideas related to the mechanisms underlying our experimental 

findings. 

Several lines of evidence suggest the involvement of second messenger 

systems in the modulation of excitatatory amino acid mediated synaptic 

transmission at the level of spinal dorsal horn: 

- Spinal dorsal horn is the area where primary afferent fibers terminate 

and make first synapse with dendrites of dorsal horn neurons. For this 

reason it is regarded as an important site of initial processing and 

integration of sensory information derived from skin, viscera and muscles. 

- Glutamic acid is the major candidate for the neurotransmitter mediating 

fast excitatory synaptic transmission of primary sensory neurons including 

C-nociceptive fibers (Mayer and Westbrook, 1987, Gerber and Randic, 

1989a,b, Kangrga and Randic, 1990, 1991, Gerber et al., 1991) 

- Primary afferent fibers, descending fibers and interneurons in the dorsal 

horn contain several neuropeptides (Hokfelt et al., 1975, Kanazava et al., 

1984, Urban and Randic, 1984, Jessel and Dodd, 1989, Seybold et al., 1989) 

that can be released upon stimulation and act on receptors coupled to 

second messenger systems (Schwartz and Kandel, 1991). In addition to 

neuropeptides at least two subtypes of glutamate receptor, NMDA 

(Cvetkovitch et al., 1991) and metabotropic (Sladecek et al., 1985, 
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Sugiyama et al., 1987, Tanabe et al., 1992, Schoepp and Conn, 1993), are 

capable of activation of second messenger system. 

- Second messenger systems are localized in spinal dorsal horn neurons 

Worley et al., 1986, Mochley-Rosen et al., 1987, Saito et al., 1988, Mori 

et al., 1990). 

- The neuroplasticity phenomena such as LTP and LTD that involve activation 

of second messenger systems and were previously described in the higher 

portions of the central nervous system exist also at the level of the 

spinal dorsal horn (Randic et al., 1993). 

- It is likely that the modulation of excitatory amino acid-mediated 

neurotransmission by second messengers underlies the modulation of synaptic 

transmission in the spinal dorsal horn and contributes to phenomena such as 

primary and secondary hyperalgesia (Hardy et al., 1952, Campbell et al., 

1989). 

This research has examined two of the possible modulatory systems that 

may control synaptic efficacy in the spinal dorsal horn, the adenylate 

cyclase-cyclic AMP-dependent second messenger system and the second 

messenger-coupled metabotropic glutamate receptor; that will be discussed 

separately. 

The activation of the cyclic AHP-dependent second messenger system enhances 

synaptic and EAA-induced responses of rat spinal dorsal horn neurons 

When dorsal root electrical stimulation was used to elicit excitatory 

postsynaptic potentials from the substantia gelatinosa neurons, the 
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activation of the cyclic AMP-dependent second messenger system induced a 

potentiation of presumably monosynaptic EPSPs. This potentiation was often 

associated with a small depolarization of resting membrane potential and 

increase in the frequency of spontaneous postsynaptic potentials. The 

latter data were consistent with the results obtained in the hippocampal 

CAl pyramidal neurons (Chavez-Noriega and Stevens, 1992) and locus 

coeruleus neurons (Wang and Aghajanian, 1990) and differ from some of the 

previous studies showing that the activators of cyclic AMP-dependent second 

messenger system caused inhibition of spontaneous activity and 

hyperpolarization of CAl cell membrane potential (Segal, 1981). 

In principle, the mechanism of the observed enhancement of the fast 

excitatory synaptic transmission by the cyclic AMP-dependent second 

messenger system can be; 1) presynaptic, i.e. the consequence of an 

increased release of neurotransmitter(s) from presynaptic terminals; 2) 

postsynaptic, resulting from the enhanced responsiveness of 

neurotransmitter receptors to released neurotransmitters or 3) it can be 

due to increased interneuronal activity. Our finding that 8-Br cyclic AMP 

increases the frequency of spontaneous EPSPs is consistent with the 

possibility that cyclic AMP enhances presynaptic release of 

neurotransmitters. This result confirms the results obtained in the 

previous studies demonstrating that cyclic AMP induces enhancement of 

presynaptic release of neurotransmitters from ORG terminals (Crain et al., 

1986, Shen and Crain, 1989). Similar enhancement of neurotransmitter 

release by cyclic AMP has been also reported in hippocampal and Aplysla 

neurons and seem to represent a general mechanism of regulation of synaptic 
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efficacy by cyclic AMP-dependent second messenger systems (Castellucci et 

al., 1980, 1982, Greengard et al., 1991, Chavez-Noriega and Stevens, 1992). 

In addition to the effect at the presynaptic site, the cyclic AMP-induced 

enhancement of fast EPSPs in the spinal dorsal horn may be a consequence of 

the increased sensitivity of postsynaptic glutamate receptors. When the 

dorsal horn neurons were pharmacologically isolated from presynaptic input 

by TTX, the activators of cyclic AMP-dependent second messenger system 

enhanced the depolarizing responses to bath-applied NMDA, AMPA, KA and QA 

in more than half of the examined neurons. However, use of intracellular 

voltage recordings from a relatively intact slice preparation, and the fact 

that the membrane potential is the final common output of a number of 

presynaptic and postsynaptic processes, makes it difficult task to assign 

conclusively a locus or mechanism to the effects produced by bath 

application of cyclic AMP analogues. To avoid these difficulties, we 

utilized in the subsequent studies the freshly isolated dorsal horn neurons 

from young rats and the whole-cell voltage-clamp technique. The fact that 

under these conditions the activation of the cyclic AMP-dependent second 

messenger system by 8-Br cyclic AMP enhanced AMPA- and NMDA-induced current 

responses of DH neurons, confirmed the direct postsynaptic action of the 

cyclic AMP-dependent second messenger system. In addition, the effect on 

NMDA-induced currents was reproduced by the intracellular application of 

cyclic AMP and catalytic subunit of protein kinase A. The study suggested 

direct phosphorylation of NMDA receptor channel proteins by PKA as a 

possible mechanism. As an alternative possibility, we can not rule out 

phosphorylation of regulatory proteins associated with the NMDA receptor-
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ion channels. 

The results obtained in white perch retinal horizontal cells, mammalian 

hippocampal neurons, and GluR6 glutamate receptor transiently expressed in 

mammalian cells confirmed our observation that non-NMDA glutamate receptors 

can be regulated by cyclic AMP-dependent protein phosphorylation (Liman et 

al., 1989, Greengard et al., 1991, Wang et al., 1991, Chavez-Noriega and 

Stevens, 1992, Raymond et al., 1993). It is likely that non-NMDA receptor 

subtype is directly phosphorylated, since at least one (GluR6) of newly 

cloned non-NMDA glutamate receptor subunits (Gasic and Hollmann, 1992) 

contains a major consensus phosphorylation site for phosphorylation by PKA. 

This possibility was confirmed in recent studies on GluR6 expressed in 

mammalian cells (Raymond et al., 1993, Wang et al., 1993). The studies 

demonstrated that a site-specific mutation of a single amino acid (ser 684) 

in the consensus phosphorylation site of GluR6 reduces or abolishes the 

enhancing effect of cFKA on glutamate- induced currents. In addition to 

currents mediated by GluR6, protein kinase A enhances kainate currents of 

glutamate receptor subunits lacking consensus phosphorylation sequence 

(Keller et al., 1992). This suggests that protein kinase A can act at 

additional, low affinity phosphorylation sites (Edelman et al., 1987, 

Kennelly and Krebs, 1991). Since the affinity of a protein phosphorylation 

site depends not only on the primary sequence, but also on higher order 

structures, supplemental experiments, such as site-directed mutagenesis, 

would be required to evaluate this possibility. Additional studies would be 

also required in order to establish the mechanism underlying the 

potentiation of non-NMDA responses by PKA. The studies on GluR6 expressed 
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in mammalian cells revealed no alteration of properties of glutamate 

currents, including reversal potential, dose-response relationship, I-V 

relationship, rise time and desensitization kinetics (Raymond et al., 1993, 

Wang et al., 1993). The single-channel analysis of non-NMDA currents in 

hippocampal neurons, however, revealed the PKA-mediated increase in the 

opening frequency and the mean open time of the non-NMDA channels 

(Greengard et al., 1991). 

In contrast to AMPA, possible modulation of NMDA receptor-channels by 

PKA remains controversial and less understood (Chen and Huang, 1991, 

Greengard et al., 1991, Randic et al., 1991, Wang et al., 1991, Cerne et 

al., 1992, McVaugh and Waxham, 1992). Although the modulation of the NMDA 

responses of rat DH neurons and oocytes injected with rat brain messenger 

RNA by protein kinase A (Cerne et al., 1992, McVaugh et al., 1992) has been 

demonstrated, whole-cell (Wang et al., 1991) and single-channel analysis 

(Greengard et al., 1991) revealed no obvious alterations of the NMDA 

channel properties in cultured hippocampal neurons. The difference in 

obtained results is not understood and it can result from different 

expression of NMDA subunits in the experimental models used. Contrary to 

the potentiation of the AMPA-induced currents by PKA, the direct 

phosphorylation of NMDA receptor by PKA is less likely, since the various 

subunits of the cloned NMDA receptor contain phosphorylation sites for 

Ca"*^-calmodulin-dependent protein kinase type II and protein kinase C 

(Morioshi et al., 1991, Kutsuwada et al., 1992) and no consensus sequence 

for PKA. However, in view of the multiplicity of NMDA receptor subtypes, 

and possibility of phosphorylation at low affinity phosphorylation sites. 
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further study is needed to determine whether NMDA receptor is directly 

phosphorylated by known protein kinases. The effect of PKA on NMDA-induced 

current of DH neurons could result also from phosphorylation of regulatory 

proteins associated with the channels or recruitment of additional 

receptors (Margiotta et al., 1987, Knox et al., 1992). It is well known 

that the properties of the nicotinic acetylcholine receptor (nAChR) can be 

regulated by a variety of pharmacological agents, and that physiological 

ligands can bind to sites distinct from the neurotransmitter binding sites, 

referred to as allosteric sites (Lena and Changeux, 1993). Although the 

physiological significance of this modulation is not fully elucidated, its 

potential role in the modulation of synaptic efficacy is suggested. The 

study of nAChR of ciliary ganglion neurons revealed the presence of a large 

pool of silent receptors that may be converted into active state through a 

cyclic-AMP-dependent process (Margiotta et al., 1987, Knox et al., 1992). 

Alternatively, intracellular nAChRs may become exposed to the surface of 

the cell in the presence of cyclic AMP (Margiotta et al., 1989). Similar 

to nAchR, NMDA-gated ion channel is also a transmembrane protein carrying 

multiple binding sites, that may link through the membrane multiple 

convergent signals from the outside, or the inside of the membrane, and 

serve as building components for the "chemical Hebb synapse". 

As we evaluate our results and relate the changes in EAA responses to 

changes in responses to afferent stimulation we should also keep in mind 

that pressure application of the glutamate receptor agonists, besides 

activating junctional glutamate receptors, also activate extrajunctional 

receptors. The latter receptors may be regulated differently (Bekkers and 
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Stevens, 1989). Whereas activation of PKA may indeed enhance sensitivity of 

the postsynaptic membrane of DH neurons to exogenous applied glutamate 

receptor agonists, different mechanisms may account for the increased 

amplitude of the monosynaptic excitatory postsynaptic potentials. However, 

the study of synaptic events in hippocampus (Greengard et al., 1991) 

indicated that forskolin acting through PKA, increases the amplitude and 

decay time of spontaneous excitatory postsynaptic currents, suggesting the 

modulation of junctional glutamate receptors. 

Our results suggest that in the rat spinal dorsal horn the activation of 

the cyclic AMP-dependent second messenger system may be involved in the 

regulation of the sensitivity of postsynaptic excitatory amino acid 

receptors and primary afferent neurotransmission. It can play an important 

role in the neuroplasticity phenomena such as long-term potentiation (Cerne 

et al., 1992, Randic et al., 1993) that was recently described in the 

spinal dorsal horn and can underlie prolonged changes in computational 

characteristics of primary afferent synapse. Recent results have suggested 

that the cyclic AMP-dependent second messenger system plays a role in the 

decrease of nociceptive threshold (or hyperalgesia) produced by the agents 

acting on primary afferent terminals (Taiwo and Levin, 1991, Taiwo et al., 

1989, 1992). 
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Modulation of AHFA and NMDA responses In rat spinal dorsal horn neurons by 

trans-1-amlnocyclopentane-1,3-dlcarboxylic ac id 

In freshly isolated spinal dorsal horn neurons (laminae I-IV) of the 

young rat, studied under whole-cell voltage-clamp conditions, the 

activation of metabotropic glutamate receptor with trans-ACPD [(±)-trans-1-

aminocyclopentane-1,3-dicarboxylic acid] and its enantiomeres 1S,3R-ACPD 

and 1R,3S-ACPD generated a slow inward current and enhanced inward currents 

induced by glutamate, AMPA and NMDA. 

Our finding that activation of metabotropic glutamate receptor generates 

slow inward current in dissociated dorsal horn neurons is in agreement with 

previous studies (Stratton et al., 1989, Charpak et al., 1990, Charpak and 

Gheweiler, 1991, Zheng and Gallagher, 1991, 1992). The inward current might 

be due to a metabotropic glutamate receptor induced reduction of voltage-

dependent and Ca^-dependent K"*" conductances (Stratton et al., 1989, 

Charpak et al., 1990, McCormick and von Krosig, 1992) or to an increase in 

Ca^ conductances (Lester and Jahr, 1990). The exact mechanism of the 

inward current in our preparation, however, remains to be elucidated. 

The enhancing effect of activation of metabotropic glutamate receptor on 

NMDA-induced current responses, observed in our preparation, is in 

agreement with recent observations in hippocampal CAl neurons, spinal 

dorsal horn neurons and oocytes injected with rat brain RNA (Aniksztejn et 

al., 1991, Harvey et al., 1991, Bleakman et al. 1992, Cerne and Randic, 

1992). However, our observation that 1S,3R-ACPD enhances the AMPA responses 

of isolated DH neurons contrasts the results of previous studies in 
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hlppocampal CAl neurons, and oocytes Injected with rat brain RNA which 

demonstrated no significant modulation of AMPA responses by the activation 

of the metabotropic glutamate receptor (Aniksztejn et al., 1991, Harvey et 

al., 1991). Our results also differ from results obtained in cerebellar 

Purkinje cells, where activation of mGluR produces depression of AMPA-

induced responses (Linden et al., 1991). Although reasons for this 

difference in the results are presently unknown, they could be due to 

differences in the AMPA receptor subtypes expressed in different 

preparations used, since studies utilizing the acutely dissociated rat 

dorsal horn neurons and nucleus tractus solitarius neurons confirmed our 

observation that activation of mGluR enhances AMPA-induced conductances 

(Bleakman et al., 1992, Glaum and Miller, 1993). In addition, a recent 

study in the hippocampal CA3 area suggested that the activation of 

metabotropic receptor in the presence of NMDA inhibitor APV, and in the 

absence of electrical stimulation, can induce long term potentiation of 

AMPA mediated component of EPSP (Bartolotto and Collingridge, 1993). 

The exact molecular mechanism underlying the modulation of AMPA and NMDA 

receptor-activated conductances by activation of metabotropic glutamate 

receptor have yet to be elucidated. Metabotropic glutamate receptor can act 

through activation of phospholipase C, resulting in production of inositol 

1,4,5-triphosphate (IP3) that releases Ca"*^ from intracellular stores, and 

diacylglycerol that activates protein kinase C (Sladeczek et al., 1985, 

Sugiyama et al., 1987). A study in the rat spinal dorsal horn preparation 

showed that activation of protein kinase C by phorbol esters enhances fast 

excitatory synaptic transmission and NMDA, QA and AMPA-induced responses of 
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dorsal horn neurons (Gerber et al., 1989). The enhancement of NMDA 

conductances by protein kinase C was later confirmed in several other 

studies (Kelso et al., 1992, Chen and Huang, 1990) and has been suggested 

as a possible pathway of the mGluR-mediated enhancement of NMDA responses 

(Kelso et al., 1992, Bortolotto and Collingridge, 1993). In addition recent 

study demonstrated that the catalytic subunit of protein kinase C enhances 

AMPA-induced currents and can therefore possibly mediate also the 

potentiating effect of metabotropic receptor activation on AMPA responses 

of DH neurons (Cerne and Randic, 1993). Several of the newly cloned AMPA 

and NMDA receptor subtypes contain consensus sequences for PKC substrates 

(Gasic and Hollmann, 1992), suggesting direct phosphorylation as a possible 

mechanism. However, PKC could phosphorylate another protein that directly 

or indirectly increases ion permeability of AMPA and NMDA receptors-

channels. Alternatively, the increase in NMDA- and AMPA-induced currents 

can be a consequence of the mobilization of Ca"*^ from intracellular stores 

in neurons (Furuya et al., 1989, Irving et al., 1990, Scheopp et al., 

1990) . Changes in intracellular Ca^ can lead to activation of Ca*+-

dependent protein kinases or phosphatases resulting in changes in several 

different second messengers and protein phosphorylation (Xia et al., 1991, 

Dermot et al., 1993). One of the Ca^ - dependent protein kinases, Ca++ 

Calmodulin-dependent protein kinase type II have been recently shown to 

enhance AMPA induced currents (McGlade-McCulloh et al., 1993). In addition 

metabotropic glutamate receptor can act also through the activation of 

cyclic AMP-dependent second messenger system (Tanabe et al., 1992). Cyclic 

AMP-dependent second messenger system activates protein kinase A, that can 
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in turn phosphorylate receptors or receptor associated proteins. Both AMPA 

and NMDA receptors are modulated by protein kinase A (Greengard et al., 

1991, Wang et al., 1991, Cerne et al., 1993). 

Through induction of prolonged changes in membrane potential and AMPA 

and NMDA conductances, metabotropic glutamate receptor can induce prolonged 

changes in synaptic function. Even though there is no evidence 

demonstrating direct involvement of metabotropic receptor in the generation 

of LTP in the spinal dorsal horn the studies of a similar phenomenon in the 

hippocampus demonstrated that the activation of metabotropic receptor 

enhances tetanus-induced short- and long-term potentiation and can also 

induce long-term potentiation in the absence of tetanic stimulation 

(Bortolotto and Gollingridge, 1993, Bashir et al., 1993). Any long term 

change in the computational characteristic of primary afferent synapse may 

be of relevance for modulation of sensory information processing in the DH. 
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